## III : Inference on Graphical Models

Tao Wu, Yuesong Shen, Zhenzhang Ye
Computer Vision \& Artificial Intelligence Technical University of Munich


## Motivation

- Many computer vision tasks boil down to inference on graphical models.


Inpainting


Stereo matching


Super-resolution


1. Probabilistic inference: compute marginal distribution

$$
p(y)=\sum_{x} p(y, x) .
$$

2. MAP inference: compute maximum of posterior distribution

$$
\arg \max _{y} p(y \mid x)
$$

## Exact Inference

## Outline of the Section

- Basic idea: Variable elimination.
- Junction tree algorithm on arbitrary MRFs.
- Belief propagation on tree factor graphs.


## Example: Marginal Query on a "Chain" MRF

Joint distribution represented by MRF:

$$
p\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=\frac{1}{Z} \phi_{1}\left(y_{1}\right) \cdot \phi_{12}\left(y_{1}, y_{2}\right) \cdot \phi_{23}\left(y_{2}, y_{3}\right) \cdot \phi_{34}\left(y_{3}, y_{4}\right) \cdot \phi_{4}\left(y_{4}\right) .
$$



Query about marginal distribution $p\left(y_{2}\right)=$ ?

## Variable Elimination

Apply variable elimination (VE) to the marginal query:

$$
\begin{aligned}
p\left(y_{2}\right) & =\sum_{y_{1}, y_{3}, y_{4}} p\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \\
& =\sum_{y_{1}, y_{3}, y_{4}} \frac{1}{Z} \phi_{1}\left(y_{1}\right) \phi_{12}\left(y_{1}, y_{2}\right) \phi_{23}\left(y_{2}, y_{3}\right) \phi_{34}\left(y_{3}, y_{4}\right) \phi_{4}\left(y_{4}\right) \\
& =\frac{1}{Z} \underbrace{\sum_{y_{1}}\left(\phi_{1}\left(y_{1}\right) \phi_{12}\left(y_{1}, y_{2}\right)\right)}_{=: m_{1 \rightarrow 2}\left(y_{2}\right)} \sum_{y_{3}}(\phi_{23}\left(y_{2}, y_{3}\right) \underbrace{\sum_{y_{4}}\left(\phi_{34}\left(y_{3}, y_{4}\right) \phi_{4}\left(y_{4}\right)\right)}_{=: m_{4 \rightarrow 3}\left(y_{3}\right)}) \\
& =\frac{1}{Z} m_{1 \rightarrow 2}\left(y_{2}\right) \underbrace{\sum_{y_{3}}\left(\phi_{23}\left(y_{2}, y_{3}\right) m_{4 \rightarrow 3}\left(y_{3}\right)\right)}_{\left.=: m_{3 \rightarrow 2}\right)\left(y_{2}\right)} \\
& =\frac{1}{Z} m_{1 \rightarrow 2}\left(y_{2}\right) m_{3 \rightarrow 2}\left(y_{2}\right), \\
Z & =\sum_{y_{2}} m_{1 \rightarrow 2}\left(y_{2}\right) m_{3 \rightarrow 2}\left(y_{2}\right) .
\end{aligned}
$$

## Variable Elimination and Beyond



- This algorithm is called sum-product VE.
- Sum-product VE yields exact inference (of one node marginal) on any tree-structured factor graph.
- Observed nodes (a.k.a. evidence) can be introduced as reduced factors.
- A similar algorithm can be derived for MAP inference - simply switch all "sum" to "max". The resulting algorithm is called max-product VE.
- We shall consider two different extensions beyond VE:

1. Inference on arbitrary MRFs? $\rightsquigarrow$ Junction tree algorithm.
2. Compute all node/factor marginals at one shot? $\rightsquigarrow$ Belief propagation.

## Junction Tree

- For an undirected graph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$, the junction tree of $\mathcal{H}$ is a tree $\mathcal{T}$ s.t.

1. The nodes of $\mathcal{T}$ consist of the maximal cliques of $\mathcal{H}$.
2. The edge $S_{i j}$ between two nodes $C_{i}, C_{j}$ of $\mathcal{T}$ (i.e. two maximal cliques of $\mathcal{H}$ ) is given by $S_{i j}=C_{i} \cap C_{j}$ (known as the running intersection property).

- $\mathcal{H}$ is triangulated if every cycle of length $\geq 4$ has a chord. (A chord is an edge that is not part of the cycle but connects two vertices of the cycle.)
- Theorem [Lauritzen '96]: A graph has a junction tree iff it is triangulated.


Figure: ${ }^{1}$ (a) Original graph; (b) Triangulation of (a); (c) Junction tree for (b).

[^0]
## Junction Tree Algorithm (Sketch)



Sum-product message passing on a junction tree $\mathcal{T}$ appears like:

$$
m_{c_{i} \rightarrow c_{j}}\left(y_{c_{j} \cap c_{i}}\right)=\sum_{y_{c_{i} \backslash c_{j}}} \phi_{c_{i}}\left(y_{c_{i}}\right) \prod_{c_{k} \in \operatorname{nbr} r_{\mathcal{T}}\left(c_{i}\right) \backslash\left\{c_{j}\right\}} m_{c_{k} \rightarrow c_{i}}\left(y_{c_{i} \cap c_{k}}\right) .
$$

Overall junction tree algorithm for exact inference on an arbitrary MRF:

1. Given an MRF with cycles, triangulate it by adding edges as necessary.
2. Form a junction tree $\mathcal{T}$ for the triangulated MRF.
3. Run VE on the junction tree $\mathcal{T}$.

## Belief Propagation on Tree Factor Graphs ${ }^{2}$



- Factor graph $\mathcal{G}=(\mathcal{V}, \mathcal{F}, \mathcal{E})$ : assumed to be a tree.
- Neighbors of a variable or factor node:

$$
\begin{aligned}
\operatorname{nbr}_{\mathcal{G}}(i) & =\{F \in \mathcal{F}:(i, F) \in \mathcal{E}\}, \\
\operatorname{nbr}_{\mathcal{G}}(F) & =\{i \in \mathcal{V}:(i, F) \in \mathcal{E}\} .
\end{aligned}
$$

- (Log-domain) energies: $E_{F}\left(y_{F}\right)=-\log \phi_{F}\left(y_{F}\right)$.

[^1]
## BP: Leaf-to-Root Stage

0. Pick $Y_{r} \in \mathcal{V}$ as the tree root (e.g. $Y_{m}$ in the figure).

1a. Schedule the leaf-to-root messages.


Figure: Belief propagation: leaf-to-root stage.
1b. Compute all leaf-to-root messages (detailed in the next slide).

## BP: Compute Messages

- Compute variable-to-factor message:

$$
q_{i \rightarrow F}\left(y_{i}\right)=\sum_{F^{\prime} \in \operatorname{nbr}_{\mathcal{G}}(i) \backslash\{F\}} r_{F^{\prime} \rightarrow i}\left(y_{i}\right)
$$



- Compute factor-to-variable message:

$$
r_{F \rightarrow i}\left(y_{i}\right)=\log \sum_{y_{F \backslash\{i\}}} \exp (-E_{F}\left(y_{F}\right)+\sum_{i^{\prime} \in \operatorname{nbr}_{\mathcal{G}}(F) \backslash\{i\}} q_{i^{\prime} \rightarrow F} \underbrace{\substack{q_{Y_{j} \rightarrow F} \\ q_{Y_{k} \rightarrow F}}}_{\substack{Y_{j} \\ Y_{k}}}{ }_{c}
$$

## BP: Compute the Partition Function



Figure: Belief propagation: leaf-to-root stage.
1c. Compute the log partition function:

$$
\log Z=\log \sum_{y_{r}} \exp \left(\sum_{F \in \operatorname{nbr}_{\mathcal{G}}(r)} r_{F \rightarrow r}\left(y_{r}\right)\right)
$$

## BP: Root-to-Leaf Stage

2a. Schedule the root-to-leaf messages.


Figure: Belief propagation: root-to-leaf stage.
2 b . Compute the root-to-leaf messages using the same formulas on page 12.

## BP: Compute Factor / Variable Marginals

2c. Alongside Step 2 b , combine messages and compute factor marginals:

$$
\mu_{F}\left(y_{F}\right):=p\left(y_{F}\right)=\exp \left(-E_{F}\left(y_{F}\right)+\sum_{i \in \operatorname{nbr}_{G}(F)} q_{i \rightarrow F}\left(y_{i}\right)-\log z\right)
$$

as well as variable marginals:

$$
\mu_{i}\left(y_{i}\right):=p\left(y_{i}\right)=\exp \left(\sum_{F \in \operatorname{nbr}(i)} r_{F \rightarrow i}\left(y_{i}\right)-\log z\right)
$$



Figure: (left) Factor marginal; (right) Variable marginal.

## BP on Pairwise MRFs (as exercise)

For a pairwise MRF $\mathcal{H}=(\mathcal{V}, \mathcal{E})$, the joint distribution is factorized by

$$
p(y)=\exp \left(-\sum_{i \in \mathcal{V}} E_{i}\left(y_{i}\right)-\sum_{(i, j) \in \mathcal{E}} E_{i j}\left(y_{i}, y_{j}\right)-\log z\right)
$$

BP on such pairwise MRF can be simplified:

- Variable-to-variable message is computed by

$$
m_{i \rightarrow j}\left(y_{j}\right)=\log \sum_{y_{i}} \exp \left(-E_{i}\left(y_{i}\right)-E_{i j}\left(y_{i}, y_{j}\right)+\sum_{k \in \operatorname{nbr}_{\left.\mathcal{H}_{H}(i) \backslash j j\right\}}} m_{k \rightarrow i}\left(y_{i}\right)\right) .
$$

- Variable marginal is computed by

$$
\mu_{i}\left(y_{i}\right)=\exp \left(-E_{i}\left(y_{i}\right)+\sum_{k \in \operatorname{nbr}_{\mathcal{H}}(i)} m_{k \rightarrow i}\left(y_{i}\right)-\log z\right) .
$$

## Further Reading

- Koller \& Friedman, Chapters 9, 10.
- Murphy, Chapter 20.
- Nowozin \& Lampert, Section 3.1.


## Variational Inference

## Outline of this Section

- Basic idea: Variational inference.
- Mean field (MF) method.
- Loopy belief propagation (LBP).


## Approximation by Tractable Distributions

- Goal: probabilistic inference on joint distribution $p(y)$ represented by general MRF (i.e. possibly with loops).
- Instead of tackling the inference on $p$ directly, we first seek for an approximation $q$ within a family $\mathcal{Q}$ consisting of "tractable" distributions:

$$
q^{*}=\arg \min _{q \in \mathcal{Q}} \mathrm{KL}(q \mid p)
$$

- The Kullback-Leibler (KL) divergence (a.k.a. relative entropy) between two distributions $q, p$ (assuming the "absolute continuity" $q \ll p$ ) is defined by

$$
\mathrm{KL}(q \mid p)=\sum_{y} q(y) \log \frac{q(y)}{p(y)}
$$

- Basic properties of KL :

1. $\mathrm{KL}(q \mid p)=0$ iff $p=q$.
2. $\mathrm{KL}(q \mid p) \geq 0 \forall q, p$.
3. $\mathrm{KL}(\cdot \mid \cdot)$ is not symmetric. Nor does it satisfy the triangle inequality.

## Preliminaries to Variational Inference

- Represented by a factor graph $\mathcal{G}=(\mathcal{V}, \mathcal{F}, \mathcal{E}), p$ takes the form

$$
p(y)=\exp \left(-\sum_{F \in \mathcal{F}} E_{F}\left(y_{F}\right)-\log Z\right)
$$

- Plug $p$ into KL divergence $\rightsquigarrow$

$$
\begin{aligned}
\mathrm{KL}(q \mid p) & =\sum_{y} q(y) \log \frac{q(y)}{p(y)}=\sum_{y} q(y) \log q(y)-\sum_{y} q(y) \log p(y) \\
& =-H(q)+\sum_{F \in \mathcal{F}} \sum_{y_{F}} \mu_{F}[q]\left(y_{F}\right) E_{F}\left(y_{F}\right)+\log Z .
\end{aligned}
$$

- $H(q)$ is the entropy of distribution $q$.
- $\mu_{F}[q]$ is the marginal distribution of $q$ over variables $Y_{F}$.
- $F_{\text {Gibss }}(q ; p):=\mathrm{KL}(q \mid p)-\log Z=-H(q)+\sum_{F \in \mathcal{F}} \sum_{y_{F}} \mu_{F}[q]\left(y_{F}\right) E_{F}\left(y_{F}\right)$ is called the Gibbs free energy.
- $\mathrm{KL}(q \mid p) \geq 0 \Rightarrow \log Z$ is lower bounded by $-F_{\text {Gibbs }}(q ; p)$.


## Mean Field Approximation

In (naive) mean field method, $\mathcal{Q}$ consists of $q$ factorized by only unaries:

$$
q(y)=\prod_{i \in \mathcal{V}} q_{i}\left(y_{i}\right)
$$



Figure: (left) Original factor graph; (right) (Naive) mean field approximation.

- Such $q$ is "tractable" because $\left\{q_{i}\left(y_{i}\right)\right\}$ provide variable marginals.
- Quick facts: $H(q)=\sum_{i \in \mathcal{V}} H\left(q_{i}\right)=-\sum_{i \in \mathcal{V}} \sum_{y_{i}} q_{i}\left(y_{i}\right) \log q_{i}\left(y_{i}\right)$,

$$
\mu_{F}[q]\left(y_{F}\right)=\prod_{i \in \operatorname{nbr}_{g}(F)} q_{i}\left(y_{i}\right) .
$$

## Mean Field (MF) Approximation

Derivation of MF approximation:

$$
\begin{aligned}
& q^{*}=\arg \min _{q \in \mathcal{Q}} \mathrm{KL}(q \mid p)=\arg \min _{q \in \mathcal{Q}} F(q ; p) \\
& =\arg \min _{q \in \mathcal{Q}}-H(q)+\sum_{F \in \mathcal{F}} \sum_{y_{F}} \mu_{F}[q]\left(y_{F}\right) E_{F}\left(y_{F}\right) \\
& =\arg \min _{\{q i\} \backslash \mathcal{V}} \sum_{i \in \mathcal{V}} \sum_{y_{i}} q_{i}\left(y_{i}\right) \log q_{i}\left(y_{i}\right)+\sum_{F \in \mathcal{F}} \sum_{y_{F}}\left(\prod_{i \in \operatorname{nbr}_{G}(F)} q_{i}\left(y_{i}\right)\right) E_{F}\left(y_{F}\right) .
\end{aligned}
$$

Each $q_{i}$ lies in the probability simplex $\Delta_{i}$, i.e.

$$
\begin{aligned}
& q_{i}\left(y_{i}\right) \geq 0 \quad \forall y_{i}, \\
& \sum_{y_{i}} q_{i}\left(y_{i}\right)=1 .
\end{aligned}
$$

The optimization can be resolved by coordinate descent (next slide).

## MF Update Formula

For each block $q_{i}$, fix $\widehat{q}_{i^{\prime}}\left(y_{i^{\prime}}\right)=q_{i^{\prime}}\left(y_{i^{\prime}}\right) \forall i^{\prime} \neq i$ and solve:
$q_{i}^{*}=\arg \min _{q_{i} \in \Delta_{i}} \sum_{y_{i}} q_{i}\left(y_{i}\right) \log q_{i}\left(y_{i}\right)+\sum_{F \in \operatorname{nbr}_{g}(i)} \sum_{y_{F}}\left(\prod_{i^{\prime} \in \operatorname{nbr}(F) \backslash\{i\}} \hat{q}_{i^{\prime}}\left(y_{i^{\prime}}\right)\right) q_{i}\left(y_{i}\right) E_{F}\left(y_{F}\right)$.


We obtain an analytical solution via Lagrange multiplier $\lambda$ for $\sum_{y_{i}} q_{i}^{*}\left(y_{i}\right)=1$ :

$$
\begin{aligned}
q_{i}^{*}\left(y_{i}\right) & =\exp \left(-1-\sum_{F \in \operatorname{nbr}_{g}(i)} \sum_{y_{F \backslash\{i\}}}\left(\prod_{i^{\prime} \in \operatorname{nbr}_{g}(F) \backslash\{i\}} \hat{q}_{i^{\prime}}\left(y_{i^{\prime}}\right)\right) E_{F}\left(y_{F}\right)+\lambda\right) \\
& \propto \exp \left(-\sum_{F \in \operatorname{nbr}_{g}(i)} \sum_{y_{F} \backslash\{i\}}\left(\prod_{i^{\prime} \in \operatorname{nbr}_{g}(F) \backslash\{i\}} \hat{q}_{i^{\prime}}\left(y_{i^{\prime}}\right)\right) E_{F}\left(y_{F}\right)\right) .
\end{aligned}
$$

## Some Remarks on MF

- The term $\prod_{i^{\prime} \in \text { nbr }_{\mathcal{G}}(F) \backslash\{i\}}{\widehat{q_{i}}}\left(y_{i^{\prime}}\right)$ is taken to be 1 if $\mathrm{nbr}_{\mathcal{G}}(F) \backslash\{i\}=\emptyset$.
- For a pairwise MRF $\mathcal{H}$, the MF update rule can be simplified as

$$
q_{i}^{*}\left(y_{i}\right) \propto \exp \left(-E_{i}\left(y_{i}\right)-\sum_{j \in \operatorname{nbr}_{H_{H}}(i)} \sum_{y_{j}} \widehat{q}_{j}\left(y_{j}\right) E_{i j}\left(y_{i}, y_{j}\right)\right) .
$$

- MF is an iterative procedure which converges to a locally optimal solution $q^{*}$.
- Upon convergence, $\left\{q_{i}^{*}\right\}$ directly provide (approximate) variable marginals.
- The tractable family $\mathcal{Q}$ can be more sophisticated than factorizations of unaries in naive mean field. $\rightsquigarrow$ Structured mean field approximation.


## From Belief Propagation to Loopy Belief Propagation

- Previously we have seen how belief propagation works on tree factor graphs.
- We can use similar update rules to derive loopy belief propagation (LBP).
- Although LBP does not guarantee the convergence (if at all) to the true marginal, it often performs well and is widely used in practice ${ }^{3}$.
- In the following, we first present the LBP algorithm and then interpret it from perspective of variational inference.

[^2]
## Loopy Belief Propagation

On a factor graph $\mathcal{G}=(\mathcal{V}, \mathcal{F}, \mathcal{E})$, (sum-product) LBP proceeds as follows.
0 . Initialize all variable-to-factor messages: $q_{i \rightarrow F}\left(y_{i}\right)=0$. Then iterate:

1. Update all factor-to-variable messages:

$$
r_{F \rightarrow i}\left(y_{i}\right)=\log \sum_{y_{F \backslash\{\{ \}}} \exp \left(-E_{F}\left(y_{F}\right)+\sum_{i^{\prime} \in \operatorname{nbr}_{g}(F) \backslash\{i\}} q_{i^{\prime} \rightarrow F}\left(y_{i^{\prime}}\right)\right) .
$$

2. Update all (normalized) variable-to-factor messages:

$$
\begin{aligned}
\bar{q}_{i \rightarrow F}\left(y_{i}\right) & =\sum_{F^{\prime} \in \operatorname{nbr}_{g}(i) \backslash\{F\}} r_{F^{\prime} \rightarrow i}\left(y_{i}\right), \\
\delta_{i \rightarrow F} & =\log \sum_{y_{i}} \exp \left(\bar{q}_{i \rightarrow F}\left(y_{i}\right)\right), \\
q_{i \rightarrow F}\left(y_{i}\right) & =\bar{q}_{i \rightarrow F}\left(y_{i}\right)-\delta_{i \rightarrow F} .
\end{aligned}
$$

## Loopy Belief Propagation (cont'd)

3. Update all factor marginals (beliefs):

$$
\mu_{F}\left(y_{F}\right) \propto \exp \left(-E_{F}\left(y_{F}\right)+\sum_{i \in \operatorname{nbr}_{\mathcal{G}}(F)} q_{i \rightarrow F}\left(y_{i}\right)\right)
$$

4. Update all variable marginals (beliefs):

$$
\mu_{i}\left(y_{i}\right) \propto \exp \left(\sum_{F \in \operatorname{nbr} r_{G}(i)} r_{F \rightarrow i}\left(y_{i}\right)\right) .
$$

Differences compared to BP:

- The normalization constants in the computation of marginals differ at each factor/variable.
- The log partition function is not directly available, but it can be approximated by the Bethe free energy:

$$
\begin{aligned}
-\log Z \approx F_{\text {Bethe }}(\mu ; p):= & \sum_{i \in \mathcal{V}}\left(1-\left|\operatorname{nbr}_{\mathcal{G}}(i)\right|\right) \sum_{y_{i}} \mu_{i}\left(y_{i}\right) \log \mu_{i}\left(y_{i}\right) \\
& +\sum_{F \in \mathcal{F}} \sum_{y_{F}} \mu_{F}\left(y_{F}\right)\left(E_{F}\left(y_{F}\right)+\log \mu_{F}\left(y_{F}\right)\right) .
\end{aligned}
$$

## Interpretation of LBP

On a pairwise MRF $\mathcal{H}=(\mathcal{V}, \mathcal{E})$, LBP can be interpreted as an attempt to solve:

$$
\begin{aligned}
\underset{\left\{\mu_{i}\right\}_{i \in \mathcal{V}, ~}^{\operatorname{minimize}}\left\{\mu_{i j}\right\}(i, j) \in \mathcal{E}}{ } & \sum_{i \in \mathcal{V}}\left(1-\left|\operatorname{nbr}_{\mathcal{H}}(i)\right|\right) \sum_{y_{i}} \mu_{i}\left(y_{i}\right) \log \mu_{i}\left(y_{i}\right) \\
& +\sum_{(i, j) \in \mathcal{E}} \sum_{y_{i}, y_{j}} \mu_{i j}\left(y_{i}, y_{j}\right)\left(E_{i j}\left(y_{i}, y_{j}\right)+\log \mu_{i j}\left(y_{i}, y_{j}\right)\right)
\end{aligned}
$$

subject to $\mu_{i}\left(y_{i}\right) \geq 0, \mu_{i j}\left(y_{i}, y_{j}\right) \geq 0, \sum_{y_{i}} \mu_{i}\left(y_{i}\right)=1, \sum_{y_{i}} \mu_{i j}\left(y_{i}, y_{j}\right)=\mu_{j}\left(y_{j}\right)$.

- The constraints impose local consistency between node marginals $\left\{\mu_{i}\right\}$ and edge marginals $\left\{\mu_{i j}\right\}$.
- However, $\left\{\mu_{i}\right\},\left\{\mu_{i j}\right\}$ under these constraints are may not be marginals of any joint distribution on $\mathcal{H}$ (i.e. outer approximation of marginal polytope).
- LBP updates can be derived from an iterative algorithm for the above constrained optimization.
- An amazing theory on variational inference arise in this context - we point those interested to the "monster" paper [Jordan \& Wainwright, 2008].


## LBP vs. MF

(+) (Naive) MF optimizes over only variable marginals; LBP optimizes over variable and factor marginals under local consistency constraints.
(+) LBP does exact inference on factor graphs without loops; MF is exact on a strict subclass of factor graphs, on which all true factor marginals are factorized by $\mu_{F}\left(y_{F}\right)=\prod_{i \in \text { nbrg }}(F) \mu_{i}\left(y_{i}\right)$ (hence an inner approximation of marginal polytope).
(+) While both being approximate inference techniques, LBP tends to be more accurate than MF in practice.
(-) MF provides a lower bound of the log partition function (given by negative Gibbs free energy), while LBP does not.
(-) Compared to LBP, it is easier to extend MF to distributions other than discrete and Gaussian, due to the simplicity of working with only variable marginals.

## Further Reading

- Murphy, Chapters 21, 22.
- Nowozin \& Lampert, Sections 3.2, 3.3.
- Koller \& Friedman, Chapter 11.
- Jordan \& Wainwright, Chapters 4, 5.


## Sampling-based Inference

## Outline of the Section

- Monte Carlo (MC) method.
- Markov chain Monte Carlo (MCMC) method.
- Sampling of Bayesian network and Markov random field.


## Basic Principle of Sampling

Given a distribution $p$, we can approximate $p$ using a finite sequence of samples $\left\{x_{n}\right\}_{n=1}^{N}$ in the sense that:

$$
\mathbb{E}_{x \sim p}[f(x)]=\sum_{x} f(x) p(x) \approx \frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right) \quad \text { for any function } f .
$$



Figure: Sampling of a Gaussian ${ }^{4}$.

[^3]
## Pseudo-Random Number Generator

Linear congruential generator for sampling $\operatorname{Unif}(0,1)$ :

$$
x_{n+1}=\left(a \cdot x_{n}+c\right) \bmod m .
$$

- Most fundamental sampler above all.
- The generated samples are pseudo-random - $\left\{x_{n}\right\}$ are "deterministic" if the generator (i.e. parameters $a, c, m$ ) and the seed $x_{0}$ are fixed.

| Source | modulus <br> m | multiplier <br> a | increment <br> c | output bits of seed in rand() or Random(L) |
| :---: | :---: | :---: | :---: | :---: |
| Numerical Recipes | $2^{32}$ | 1664525 | 1013904223 |  |
| Borland C/C++ | $2^{32}$ | 22695477 | 1 | bits 30.16 in rand(), $30 . .0$ in 1 rand() |
| glibc (used by GCC) ${ }^{[9]}$ | $2^{31}$ | 1103515245 | 12345 | bits 30.0 |
| ANSI C: Watcom, Digital Mars, CodeWarrior, IBM VisualAge C/C++ ${ }^{[10]}$ C90, C99, C11: Suggestion in the ISO/IEC $9899{ }^{[11]}$, C18 | $2^{31}$ | 1103515245 | 12345 | bits 30.16 |
| Borland Delphi, Virtual Pascal | $2^{32}$ | 134775813 | 1 | bits 63.32 of (seed * L) |
| Turbo Pascal | $2^{32}$ | 134775813 (0x8088405 ${ }_{18}$ ) | 1 |  |
| Microsoft Visual/Quick C/C++ | $2^{32}$ | 214013 (343FD ${ }_{18}$ ) | 2531011 (269EC3 $_{18}$ ) | bits 30.16 |
| Microsoft Visual Basic ( 6 and earlier) ${ }^{[12]}$ | $2^{24}$ | 1140671485 (43FD43FD ${ }_{18}$ ) | 12820163 (C39EC3 ${ }_{18}$ ) |  |
| RtIUniform from Native API ${ }^{[13]}$ | $2^{31}-1$ | 2147483629 (7FFFFFED $_{18}$ ) | 2147483587 <br> (7FFFFFC3 ${ }_{18}$ ) |  |
| Apple CarbonLib, C++11's minstd_rando ${ }^{[14]}$ | $2^{31}-1$ | 16807 | 0 | see MINSTD |
| C++11's minstd_rand ${ }^{[14]}$ | $2^{31}-1$ | 48271 | 0 | see MINSTD |
| MMIX by Donald Knuth | $2^{84}$ | 6364136223846793005 | 1442695040888963407 |  |
| Newlib, Mus | $2^{84}$ | 6364136223846793005 | 1 | bits 63... 32 |
| VMS's MTH\$RANDOM, ${ }^{[15]}$ old versions of glibc | $2^{32}$ | 69069 (10DCD ${ }_{16}$ ) | 1 |  |
| Java's java.util. Random, POSIX [In]rand48, glibc [ln]rand48[r] | $2^{48}$ | 25214903917 <br> (5DEECE66D ${ }_{18}$ ) | 11 | bits 47...16 |

Figure: Commonly used linear congruential generators ${ }^{5}$.

[^4]
## Sampling Gaussians

- Sample univariate Gaussian distribution by Box-Muller method:

1. Sample $\left(z_{1}, z_{2}\right) \sim p_{z}\left(z_{1}, z_{2}\right)=\frac{1}{\pi} \mathbf{1}\left\{z_{1}^{2}+z_{2}^{2} \leq 1\right\}$ (i.e. uniform distribution supported on the unit 2D circle).
2. Perform the Box-Muller transformation and output $x_{1}, x_{2}$ :

$$
x_{i}=z_{i} \sqrt{\frac{-2 \log \left(z_{1}^{2}+z_{2}^{2}\right)}{z_{1}^{2}+z_{2}^{2}}}, \quad i \in\{1,2\}
$$

Fact: $x_{1}, x_{2}$ are two i.i.d. samples under $\operatorname{Normal}(0,1)$ :

$$
p_{x}\left(x_{1}, x_{2}\right)=p_{z}\left(z_{1}, z_{2}\right)\left|\frac{\partial\left(z_{1}, z_{2}\right)}{\partial\left(x_{1}, x_{2}\right)}\right|=\frac{1}{\sqrt{2 \pi}} \exp \left(-x_{1}^{2} / 2\right) \cdot \frac{1}{\sqrt{2 \pi}} \exp \left(-x_{2}^{2} / 2\right) .
$$

- Sample multivariate Gaussian distribution, $y \sim \operatorname{Normal}(\mu, \Sigma)$, by:

1. Perform Cholesky decomposition $\Sigma=L L^{\top}$.
2. Sample $x \sim \operatorname{Normal}(0, I)$, and output $y:=L x+\mu$.

Fact: $\mathbb{E}[y]=\mu$, and $\operatorname{Var}[y]=L \operatorname{Var}[x] L^{\top}=L / L^{\top}=\Sigma$.

## Sampling by Inverse CDF

## Sample by inverse Cumulative Distribution Function:

- Let $u \sim \operatorname{Unif}(0,1)$ and $F_{p}$ be the CDF for (univariate) distribution $p$, i.e.

$$
F_{p}(y):=\int_{-\infty}^{y} p(x) d x=\int_{-\infty}^{\infty} 1\{x \leq y\} p(x) d x
$$

- Note that $x \sim p \Leftrightarrow P(x \leq y)=F_{p}(y)$.
- We assert $F_{p}^{-1}(u) \sim p$, since

$$
\begin{aligned}
P\left(F_{p}^{-1}(u) \leq y\right) & =P\left(u \leq F_{p}(y)\right) & \left(\text { since } F_{p}\right. \text { is monotone) } \\
& =F_{p}(y) . & \text { (since } P(u \leq v)=v \forall v \in[0,1])
\end{aligned}
$$



Figure: Sampling using inverse CDF [Murphy, Figure 23.1].

## Rejection Sampling

- Inverse CDF sampling requires explicit knowledge of $F_{p}^{-1}$.


## - Rejection Sampling:

Require: unnormalized target distribution $\widetilde{p}$ (i.e. $\widetilde{p}(x) / Z_{p}=p(x)$ for target distribution $p$ ), proposal distribution $q$ and constant $M>0$

$$
\text { s.t. } M q(x) \geq \widetilde{p}(x) \forall x(\Rightarrow p \ll q) \text {. }
$$

1. Sample $x \sim q$, and $u \sim \operatorname{Unif}(0,1)$.
2. If $u>\frac{\tilde{p}(x)}{M q(x)}$, reject the proposed sample $x$; otherwise, accept $x$.


Figure: Rejection sampling [Murphy, Figure 23.2].

- Proof: (univariate case) $P(x \leq y \mid x$ accepted $)=\frac{P(x \leq y, x \text { accepted })}{P(x \text { accepted })}=$ $\frac{\iint \mathbf{1}\{u \leq \tilde{p}(x) /(M q(x)), x \leq y\} q(x) d u d x}{\iint \mathbb{1}\{u \leq \tilde{p}(x) /(M q(x))\} q(x) d u d x}=\frac{\frac{1}{M} \int_{-\infty}^{y} \widetilde{\mathcal{P}}(x) d x}{\frac{1}{M} \int_{-\infty}^{\infty} \tilde{\mathcal{p}}(x) d x}=F_{p}(y)$.


## Importance Sampling

- In rejection sampling, $P(x$ accepted $)=\frac{1}{M} \int_{-\infty}^{\infty} \widetilde{p}(x) d x$, i.e., many proposed samples are potentially wasted.
- In contrast, importance sampling uses all samples by weighting them:

$$
\mathbb{E}_{x \sim p}[f(x)]=\int f(x) \frac{p(x)}{q(x)} q(x) d x \approx \frac{1}{N} \sum_{n=1}^{N} w_{n} f\left(x_{n}\right)
$$

with $x_{n} \sim q$ i.i.d. and $w_{n}=\frac{p\left(x_{n}\right)}{q\left(x_{n}\right)}$.

- Extend importance sampling to unnormalized distributions $\widetilde{p}, \widetilde{q}$ :

$$
\begin{aligned}
\mathbb{E}_{x \sim p}[f(x)] & =\frac{Z_{q}}{Z_{p}} \int f(x) \frac{\widetilde{p}(x)}{\widetilde{q}(x)} q(x) d x \approx \frac{Z_{q}}{Z_{p}} \frac{1}{N} \sum_{n=1}^{N} \frac{\widetilde{p}\left(x_{n}\right)}{\widetilde{q}\left(x_{n}\right)} f\left(x_{n}\right), \quad x_{n} \sim q \text { i.i.d. } \\
\frac{Z_{p}}{Z_{q}} & =\int \frac{1}{Z_{q}} \widetilde{p}(x) d x=\int \frac{\widetilde{p}(x)}{\widetilde{q}(x)} q(x) d x \approx \frac{1}{N} \sum_{n=1}^{N} \frac{\widetilde{p}\left(x_{n}^{\prime}\right)}{\widetilde{q}\left(x_{n}^{\prime}\right)}, \quad x_{n}^{\prime} \sim q \text { i.i.d. }
\end{aligned}
$$

We often take $x_{n}^{\prime}=x_{n}$. For finite $N$, this yields a biased estimator of $p$.

## Sampling of Bayesian Network

Recall that the distribution represented by BN is given by

$$
p(x)=\prod_{i \in \mathcal{V}} p\left(x_{i} \mid\left(x_{j}\right)_{j \in \operatorname{Pa}_{\mathcal{G}}(i)}\right)
$$



Ancestral sampling: Given that no variables are observed, we can follow the topological order of the BN and sample each individual conditional distribution.

## Sampling of BN with Evidence

In case the $\mathrm{BN} \mathcal{G}$ contains observed nodes (called evidence), we can modify ancestral sampling (AS) as follows:

- Logic sampling: Perform AS. Whenever a sampled node takes different value from the evidence, reject the whole sample and start again.
- LS is closely related to rejection sampling. Unsurprisingly, it is inefficient for wasting samples.
- Likelihood weighting: Perform AS. Whenever node $i$ is observed (written $i \in \mathcal{O}$ ), we clamp the observed value, i.e. $x_{i}:=\bar{x}_{i}$, and weight the whole sample $x$ by the probability of the clamped node $p\left(\bar{x}_{i} \mid x_{\mathrm{Pa}_{G}(i)}\right)$.
- LW can be interpreted as importance sampling with weights given by:

$$
w(x)=\frac{\tilde{p}(x)}{q(x)}=\frac{1\left\{x_{\mathcal{O}}=\bar{x}_{\mathcal{O}}\right\} \prod_{i \in \mathcal{V}} p\left(x_{i} \mid x_{\mathrm{Pa}_{\mathcal{G}}(i)}\right)}{\prod_{i \in \mathcal{V} \backslash \mathcal{O}} p\left(x_{i} \mid x_{\mathrm{Pa}_{\mathcal{G}}(i)}\right) \prod_{i \in \mathcal{O}} \delta_{\bar{x}_{i}}\left(x_{i}\right)}=\prod_{i \in \mathcal{O}} p\left(\bar{x}_{i} \mid x_{\mathrm{Pa}_{\mathfrak{G}}(i)}\right) .
$$

$\delta_{\bar{x}}$ denotes the Dirac distribution defined by $\delta_{\bar{x}}(x)= \begin{cases}1 & \text { if } x=\bar{x}, \\ 0 & \text { otherwise } .\end{cases}$

## Towards Markov Chain Monte Carlo

- Monte Carlo sampling requires exact or rough knowledge of the partition function (of an MRF), hence impractical for high dimensional distributions.
- Instead of generating i.i.d. samples, Markov Chain Monte Carlo (MCMC) constructs a Markov chain using "adaptive" proposal distributions, in a way that the Markov chain converges to a stationary distribution identical to the target distribution.


Figure: Sampling by MCMC [Murphy, Figure 24.7].

## Markov Chain

- The (discrete-time) Markov chain (MC) is a sequence of RVs $\left(X_{n}\right)_{n=1}^{\infty}$ satisfying the Markov property:

$$
P\left(X_{n+1}=x \mid X_{1}, \ldots, X_{n} \text { given }\right)=P\left(X_{n+1}=x \mid X_{n} \text { given }\right)
$$

"The future depends on the past only through the present."

- Further assume:

1. All $X_{n}$ has a finite state space $\mathcal{X}$.
2. The MC is time-homogeneous, i.e., the transition probability is time-independent

$$
P\left(X_{n+1}=x^{\prime} \mid X_{n}=x\right)=: \pi\left(x^{\prime} \mid x\right) \quad \forall n,
$$

with $\pi\left(x^{\prime} \mid x\right) \geq 0, \sum_{x^{\prime}} \pi\left(x^{\prime} \mid x\right)=1 . \pi$ is the transition kernel of the MC.

- Denote by $p_{n}$ the distribution at time step $n$ :

$$
p_{n}(x)=P\left(X_{n}=x\right) \quad \Rightarrow p_{n+1}\left(x^{\prime}\right)=\sum_{x} p_{n}(x) \pi\left(x^{\prime} \mid x\right)
$$

## Relevant Notions on Markov Chain

- $p_{*}$ is a stationary distribution for the MC if

$$
p_{*}\left(x^{\prime}\right)=\sum_{x} p_{*}(x) \pi\left(x^{\prime} \mid x\right) \forall x^{\prime} \in \mathcal{X} .
$$

- The MC is irreducible if

$$
\forall x, x^{\prime} \in \mathcal{X} \exists n\left(x, x^{\prime}\right) \text { s.t. } P\left(X_{n}=x^{\prime} \mid X_{0}=x\right)>0
$$

i.e., it is possible to get to any state from any state in finite steps.

- A state $x \in \mathcal{X}$ has period $T_{x}$ if
$T_{x}=\operatorname{gcd}\left\{n>0: P\left(X_{n}=x \mid X_{0}=x\right)>0\right\}, \quad \#$ "greatest common divisor"
i.e., any loop over state $x$ must occur in a multiple of $T_{x}$ steps.

We say the MC is aperiodic if $T_{x}=1 \forall x \in \mathcal{X}$.

- The MC is regular if

$$
\exists n \text { s.t. } P\left(X_{n}=x^{\prime} \mid X_{0}=x\right)>0 \forall x, x^{\prime} \in \mathcal{X}
$$

Fact: MC is regular $\Rightarrow$ MC is irreducible and aperiodic.

## Convergence to Stationary Distribution

Theorem 1: If the transition kernel $\pi$ of a Markov chain satisfies the detailed balance condition for some distribution $p_{*}$ :

$$
p_{*}(x) \pi\left(x^{\prime} \mid x\right)=p_{*}\left(x^{\prime}\right) \pi\left(x \mid x^{\prime}\right) \quad \forall x, x^{\prime} \in \mathcal{X},
$$

then $p_{*}$ is a stationary distribution for the Markov chain.
Proof: $\sum_{x} p_{*}(x) \pi\left(x^{\prime} \mid x\right)=\sum_{x} p_{*}\left(x^{\prime}\right) \pi\left(x \mid x^{\prime}\right)=p_{*}\left(x^{\prime}\right) \sum_{x} \pi\left(x \mid x^{\prime}\right)=p_{*}\left(x^{\prime}\right)$.
Theorem ${ }^{6}$ : Every irreducible, aperiodic, finite-state Markov chain has a limiting distribution

$$
p_{*}\left(x^{\prime}\right)=\lim _{n \rightarrow \infty} \sum_{x} P\left(X_{n}=x^{\prime} \mid X_{0}=x\right) p_{0}(x),
$$

regardless of the initial distribution $p_{0}$. Indeed, $p_{*}$ is equal to the unique stationary distribution of the MC.

[^5]
## Metropolis-Hastings Algorithm

Metropolis-Hastings (MH) algorithm:
Input: unnormalized target distribution $\widetilde{p}$ (i.e. $\left.p_{*}(x)=\widetilde{p}(x) / Z_{p}\right)$, proposal distribution $q(\cdot \mid \cdot)$, initial sample $x_{0}$. Loop $n=0,1,2, \ldots$ as follows:

1. Set $x=x_{n}$. Sample $x^{\prime} \sim q\left(x^{\prime} \mid x\right)$.
2. Compute acceptance probability $\alpha=\frac{\widetilde{p}\left(x^{\prime}\right) q\left(x \mid x^{\prime}\right)}{\widetilde{p}(x) q\left(x^{\prime} \mid x\right)}$.
3. Compute $r=\min (1, \alpha)$. Sample $u \sim \operatorname{Unif}(0,1)$.
4. Set new sample to: $x_{n+1}= \begin{cases}x^{\prime} & \text { if } u<r, \\ x_{n} & \text { if } u \geq r .\end{cases}$

Some remarks:

- For a given target distribution $p_{*}$, a proposal distribution $q$ is valid if $\operatorname{supp}\left(p_{*}\right) \subset \cup_{x} \operatorname{supp}(q(\cdot \mid x))$, i.e. $\forall x^{\prime}$ with $p_{*}\left(x^{\prime}\right)>0 \exists x$ s.t. $q\left(x^{\prime} \mid x\right)>0$.
- If $q$ is symmetric, i.e. $q\left(x^{\prime} \mid x\right)=q\left(x \mid x^{\prime}\right)$, then MH simplifies to the Metropolis algorithm with $\alpha=\frac{\tilde{\tilde{p}}\left(x^{\prime}\right)}{\tilde{p}(x)}$. Hastings made the correction for asymmetric $q$.


## Analysis of MH Algorithm

We analyze with convergence of the MH algorithm:

1. MH generates a Markov chain with the transition kernel:

$$
\pi\left(x^{\prime} \mid x\right)= \begin{cases}q\left(x^{\prime} \mid x\right) r\left(x^{\prime} \mid x\right) & \text { if } x^{\prime} \neq x, \\ q(x \mid x)+\sum_{x^{\prime} \neq x} q\left(x^{\prime} \mid x\right)\left(1-r\left(x^{\prime} \mid x\right)\right) & \text { if } x^{\prime}=x\end{cases}
$$

$r\left(x^{\prime} \mid x\right)$ is the conditional probability that $x^{\prime}$ is accepted after being proposed. We will show that the Markov chain satisfies the detailed balance condition:

$$
p_{*}(x) \pi\left(x^{\prime} \mid x\right)=p_{*}\left(x^{\prime}\right) \pi\left(x \mid x^{\prime}\right)
$$

2. Let two states $x$ and $x^{\prime}\left(x \neq x^{\prime}\right)$ be arbitrarily fixed. Either

$$
p_{*}(x) \pi\left(x^{\prime} \mid x\right) \leq p_{*}\left(x^{\prime}\right) \pi\left(x \mid x^{\prime}\right)
$$

or the reversed inequality holds. Without loss of generality, we proceed with inequality ( $\dagger$ ).

## Analysis of MH Algorithm (cont'd)

$$
p_{*}(x) \pi\left(x^{\prime} \mid x\right) \leq p_{*}\left(x^{\prime}\right) \pi\left(x \mid x^{\prime}\right)
$$

3. $(\dagger) \Rightarrow \alpha\left(x^{\prime} \mid x\right)=\frac{p_{*}\left(x^{\prime}\right) q\left(x \mid x^{\prime}\right)}{p_{*}(x) q\left(x^{\prime} \mid x\right)} \leq 1 \Rightarrow r\left(x^{\prime} \mid x\right)=\alpha\left(x^{\prime} \mid x\right)$
$\Rightarrow \pi\left(x^{\prime} \mid x\right)=q\left(x^{\prime} \mid x\right) r\left(x^{\prime} \mid x\right)=q\left(x^{\prime} \mid x\right) \frac{p_{*}\left(x^{\prime}\right) q\left(x \mid x^{\prime}\right)}{p_{*}(x) q\left(x^{\prime} \mid x\right)}=\frac{p_{*}\left(x^{\prime}\right)}{p_{*}(x)} q\left(x \mid x^{\prime}\right)$.
4. $(\dagger) \Rightarrow \alpha\left(x \mid x^{\prime}\right)=\frac{p_{*}(x) q\left(x^{\prime} \mid x\right)}{p_{*}\left(x^{\prime}\right) q\left(x \mid x^{\prime}\right)} \geq 1 \Rightarrow r\left(x \mid x^{\prime}\right)=1$ $\Rightarrow \pi\left(x \mid x^{\prime}\right)=q\left(x \mid x^{\prime}\right) r\left(x \mid x^{\prime}\right)=q\left(x \mid x^{\prime}\right)$.
5. Combining (3) and (4), we conclude that $p_{*}(x) \pi\left(x^{\prime} \mid x\right)=p_{*}\left(x^{\prime}\right) \pi\left(x \mid x^{\prime}\right)$. Hence, by Theorem 1, $p_{*}$ is a stationary distribution for the Markov chain.
6. If in addition the Markov chain generated by the MH algorithm is irreducible and aperiodic, then by Theorem 2 the Markov chain converges to the unique stationary distribution $p_{*}$.

## Gibbs Sampling

## Gibbs sampling:

Input: unnormalized target distribution $\widetilde{p}\left(\left(x_{i}\right)_{i=1}^{|\mathcal{V}|}\right)$, initial sample $x^{0}$.
Loop $n \in\{0,1,2, \ldots\}$ :
Loop $i \in\{1,2, \ldots,|\mathcal{V}|\}:$
Sample $x_{i}^{n+1} \sim p\left(x_{i} \mid x_{\{0, \ldots, i-1\}}^{n+1}, x_{\{i+1, \ldots,|\mathcal{V}|\}}^{n}\right)$.
Some remarks:

- If $p$ (or $\widetilde{p}$ ) is represented by a graphical model (either BN or MRF), then sampling of $x_{i}^{n+1}$ only involves the Markov blanket of $i$.
- Gibbs sampling can be interpreted as the MH algorithm with the proposal:

$$
q\left(x^{\prime} \mid x\right)=p\left(x_{i}^{\prime} \mid x_{\mathcal{V} \backslash\{i\}}^{\prime}\right) \delta_{x_{\mathcal{V} \backslash\{i\}}}\left(x_{\mathcal{V} \backslash\{i\}}^{\prime}\right),
$$

and $100 \%$ acceptance rate:

$$
\alpha=\frac{p\left(x^{\prime}\right) q\left(x \mid x^{\prime}\right)}{p(x) q\left(x^{\prime} \mid x\right)}=\frac{p\left(x_{i}^{\prime} \mid x_{\mathcal{V} \backslash\{i\}}^{\prime}\right) p\left(x_{\mathcal{V} \backslash\{i\}}^{\prime}\right) p\left(x_{i} \mid x_{\mathcal{V} \backslash\{i\}}\right) \delta_{x_{V}^{\prime} \backslash\{i\}}\left(x_{\mathcal{V} \backslash\{i\}}\right)}{p\left(x_{i} \mid x_{\mathcal{V} \backslash\{i\}}\right) p\left(x_{\mathcal{V} \backslash\{i\}}\right) p\left(x_{i}^{\prime} \mid x_{\mathcal{V} \backslash\{i\}}^{\prime}\right) \delta_{x_{\mathcal{V},\{i\}}}\left(x_{\mathcal{V} \backslash i\}}^{\prime}\right)}=1 .
$$

## Example: Gibbs Sampling for Pairwise CRF




Figure: Gibbs Sampling for Pairwise $\mathrm{CRF}^{7}$.
We can apply Gibbs sampling to find

$$
y \sim p(y \mid x) \propto \exp \left(-\sum_{i \in \mathcal{V}} E_{i}\left(y_{i} ; x_{i}\right)-\sum_{(i, j) \in \mathcal{E}} E_{i j}\left(y_{i}, y_{j}\right)\right) .
$$

For each $i \in \mathcal{V}$, sample (e.g. by inverse CDF method):

$$
y_{i}^{n+1} \sim p\left(y_{i} \mid x_{i}, y_{\mathrm{nbr}(i)}^{n}\right) \propto \exp \left(-E_{i}\left(y_{i} ; x_{i}\right)-\sum_{j \in \mathrm{nbr}(i)} E_{i j}\left(y_{i}, y_{j}^{n}\right)\right) .
$$

[^6]
## Further Reading

- Murphy, Chapters 23, 24.
- Nowozin \& Lampert, Section 3.4.
- Koller \& Friedman, Chapter 12.


## MAP Inference

## More about MAP Inference

- So far this chapter has been focusing on probabilistic inference.
- MAP inference is about finding $\arg \max _{y} p(y)$ or $\arg \max _{y} p(y \mid x)$.
- To some extent, MAP inference is easier than probabilistic inference for the reason that the partition function $Z$ (in the context of MRF) can be ignored in MAP inference.
- Probabilistic inference algorithms (e.g. variable elimination, (loopy) belief propagation) have analogs for MAP inference: sum-product $\rightarrow$ max-product.
- There also exist fast specialized MAP inference algorithms. We will show one such example: graph-cut algorithm.


## Max-Product Loopy Belief Propagation

On a factor graph $\mathcal{G}=(\mathcal{V}, \mathcal{F}, \mathcal{E})$, the max-product LBP proceeds as follows.
0 . Initialize all variable-to-factor messages: $q_{i \rightarrow F}\left(y_{i}\right)=0$. Then iterate:

1. Update all factor-to-variable messages:

$$
r_{F \rightarrow i}\left(y_{i}\right)=\max _{y_{F \backslash\{i\}}}\left(-E_{F}\left(y_{F}\right)+\sum_{i^{\prime} \in \operatorname{nbr}_{\mathcal{G}}(F) \backslash\{i\}} q_{i^{\prime} \rightarrow F}\left(y_{i^{\prime}}\right)\right)
$$


2. Update the max-beliefs:

$$
\mu_{i}\left(y_{i}\right)=\sum_{F \in \mathrm{nbr} r_{g}(i)} r_{F \rightarrow i}\left(y_{i}\right),
$$

and their maximizers $y_{i}^{*}=\arg \max _{y_{i}} \mu_{i}\left(y_{i}\right)$.

## Max-Product Loopy Belief Propagation (cont'd)

3. Update all (normalized) variable-to-factor messages:

$$
\bar{q}_{i \rightarrow F}\left(y_{i}\right)=\sum_{F^{\prime} \in \operatorname{nbr}(i) \backslash\{F\}} r_{F^{\prime} \rightarrow i}\left(y_{i}\right),
$$

$$
\delta_{i \rightarrow F}=\bar{\sum}_{y_{i}} \bar{q}_{i \rightarrow F}\left(y_{i}\right), \quad \# \bar{\sum} \text { stands for averaged sum. }
$$

$$
q_{i \rightarrow F}\left(y_{i}\right)=\bar{q}_{i \rightarrow F}\left(y_{i}\right)-\delta_{i \rightarrow F} . \quad \text { \# Normalization } \Rightarrow \sum_{y_{i}} q_{i \rightarrow F}\left(y_{i}\right)=0
$$



Some comments:

- Due to computation in log-domain, the above algorithm is sometimes called the max-sum loopy belief propagation.
- For tree factor graphs, max-product BP is exact upon completion of one leaf-to-root and one root-to-leaf message updates.


## Graph-Cut Algorithm

- Graph cut algorithms can solve "certain" MAP inference tasks on MRFs in polynomial time. They are widely used in computer vision applications ${ }^{8}$.
- Next we demonstrate graph cut on binary-valued pairwise $\operatorname{MRF}(\mathcal{V}, \mathcal{E})$ :

$$
p(x)=\frac{1}{Z} \exp \left(-\sum_{i \in \mathcal{V}} E_{i}\left(x_{i}\right)-\sum_{(i, j) \in \mathcal{E}} E_{i j}\left(x_{i}, x_{j}\right)\right), \quad x \in\{0,1\}^{\mathcal{V}}
$$

- Assume that all pairwise energies take the special form

$$
E_{i j}\left(x_{i}, x_{j}\right)= \begin{cases}0 & \text { if } x_{i}=x_{j}, \\ \lambda_{i j} & \text { if } x_{i} \neq x_{j},\end{cases}
$$

with $\lambda_{i j} \geq 0 \forall(i, j) \in \mathcal{E}$. This encourages neighboring nodes to have the same value. The overall model is called the "generalized Ising model".

- Also assume that $\forall i \in \mathcal{V}$ : either $E_{i}(0)=0, E_{i}(1) \geq 0$ or $E_{i}(1)=0, E_{i}(0) \geq 0$.

[^7]
## Construction of Max-Flow/Min-Cut Problem

- Construct a graph such that:
- The nodes are $\mathcal{V} \cup\{s, t\}$, where $s$ is the source and $t$ is the sink.
- If $E_{i}(1)=0$, introduce an edge $i \rightarrow t$ with cost $E_{i}(0)$.
- If $E_{i}(0)=0$, introduce an edge $s \rightarrow i$ with cost $E_{i}(1)$.
- If $(i, j) \in \mathcal{E}$, introduce both edges $i \rightarrow j$ and $j \rightarrow i$ with cost $\lambda_{i j}$.
- The st-cut cost on the constructed graph is equal to the MRF energy:

$$
\sum_{\substack{x, x^{\prime} \in \mathcal{V} \backslash\{s, t\} \\ x=0, x^{\prime}=1}} \operatorname{cost}\left(x, x^{\prime}\right)=\sum_{i \in \mathcal{V}} E_{i}\left(x_{i}\right)+\sum_{(i, j) \in \mathcal{E}} E_{i j}\left(x_{i}, x_{j}\right)
$$

- Compute a minimal st-cut, e.g. by Ford-Fulkerson algorithm or its variants.


Example (graph cut applied to MRF with 4 nodes):

$$
\begin{aligned}
& E_{1}(0)=7, E_{2}(1)=2, E_{3}(1)=1, E_{4}(1)=6, \\
& \lambda_{12}=6, \lambda_{23}=6, \lambda_{34}=2, \lambda_{14}=1 .
\end{aligned}
$$

Source: [Koller \& Friedman, Figure 13.5].

## Extension of Graph Cut to Submodular Energies

- We now extend graph cut to binary-valued pairwise $\operatorname{MRF}(\mathcal{V}, \mathcal{E})$ with submodular energies.
- A pairwise energy $E_{i j}\left(x_{i}, x_{j}\right)$ is said to be submodular if

$$
E_{i j}(1,1)+E_{i j}(0,0) \leq E_{i j}(0,1)+E_{i j}(1,0) .
$$

- Construct new energies as follows:

$$
\begin{aligned}
& \text { Initialize } \widetilde{E}_{i}(\cdot):=E_{i}(\cdot) \forall i \in \mathcal{V}, \widetilde{E}_{i, j}(\cdot, \cdot):=0 \forall(i, j) \in \mathcal{E} \text {. } \\
& \text { Loop }(i, j) \in \mathcal{E}^{\mathcal{E}} \text { : } \\
& \widetilde{E}_{i}(1):=\widetilde{E}_{i}(1)+E_{i j}(1,0)-E_{i j}(0,0) . \\
& \widetilde{E}_{j}(1):=\widetilde{E}_{j}(1)+E_{i j}(1,1)-E_{i j}(1,0) . \\
& \widetilde{E}_{i j}(0,1):=E_{i j}(1,0)+E_{i j}(0,1)-E_{i j}(0,0)-E_{i j}(1,1) .
\end{aligned}
$$

- Construct a graph such that:
- The nodes are $\mathcal{V} \cup\{s, t\}$, where $s$ is the source and $t$ is the sink.
- If $\widetilde{E}_{i}(1) \geq \widetilde{E}_{i}(0)$, introduce an edge $s \rightarrow i$ with $\operatorname{cost} \widetilde{E}_{i}(1)-\widetilde{E}_{i}(0)$.
- If $\widetilde{E}_{i}(1) \leq \widetilde{E}_{i}(0)$, introduce an edge $i \rightarrow t$ with cost $\widetilde{E}_{i}(0)-\widetilde{E}_{i}(1)$.
- If $(i, j) \in \mathcal{E}$ and $\widetilde{E}_{i j}(0,1)>0$, introduce an edge $i \rightarrow j$ with cost $\widetilde{E}_{i j}(0,1)$.


## Further Reading

Further reading:

- Murphy, Section 22.6.
- Koller \& Friedman, Chapter 13.

Interesting topics that are not covered in the lecture:

- Extension of graph cut to non-binary-valued MRFs: alpha-expansion, alpha-beta swap.
- Linear programming relaxation, and its connection to max-product (loopy) belief propagation.
- Dual decomposition.


[^0]:    ${ }^{1}$ Wainwright and Jordan, "Graphical Models, Exponential Families, and Variational Inference".

[^1]:    ${ }^{2}$ Illustrations for BP are extracted from Nowozin \& Lampert, 2011.

[^2]:    ${ }^{3}$ Murphy et al., "Loopy Belief Propagation for Approximate Inference: An Empirical Study".

[^3]:    ${ }^{4}$ https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html

[^4]:    ${ }^{5}$ https://en.wikipedia.org/wiki/Linear_congruential_generator

[^5]:    ${ }^{6}$ [Murphy, Theorem 17.2.1]
    PGM SS19: III : Inference on Graphical Models

[^6]:    ${ }^{7}$ Source of images: [Murphy, Figure 24.1].
    PGM SS19 : III : Inference on Graphical Models

[^7]:    ${ }^{8}$ Boykov and Kolmogorov, "An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision". PGM SS19: III : Inference on Graphical Models

