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Motivation

— Many computer vision tasks boil down to inference on graphical models.

Denoising Optical flow Stereo matching

1. Probabilistic inference: compute marginal distribution
=> ply.x
X

2. MAP inference: compute maximum of conditional distribution

arg max p(y|x).
y
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Outline of the Section

- Basic idea: Variable elimination.
- Junction tree algorithm on arbitrary MRFs.

- Belief propagation on tree factor graphs.
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Example: Marginal Query on a "Chain" MRF

Joint distribution represented by MRF:

1
p(y1, Y2, Y3, Ya) = E¢1 (V1) - P12(y1, ¥2) - P23(V2, ¥3) - 34(Va, Ya) - Palya).

LOL OO O

Query about marginal distribution p(y>) =7
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Variable Elimination

Apply variable elimination (VE) to the marginal query:
p(y2) — Z ,0(}/1 » Y2, V3, y4)

Yi.aYe
_ Z 12¢1(y1)¢12(y1,yz)(bzs(}/z,Y3)¢34(Y37Y4)¢4(Y4)
y1 Y s
Z Z (¢1 y1)d12(y4, Y2)> Ey: ((/523(}’2»}’3) Ey: (634(y3, ya)Pa(ya)) )
— My a(ys) a = —: My a(s) ’
- %m1 La(ye) %: (¢23(y2, Y3)m4%3(}’3))
1 = —: ms_2(y2) ”
= > S2(Y2)Masa(y2),
Z = m_a(y2)msa(y2).

Y2
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Variable Elimination

> <€
HOL OO O
. This algorithm is called sum-product VE.

- Sum-product VE yields exact inference (of one node marginal) on any
tree-structured factor graph.

. A similar algorithm can be derived for MAP inference — simply switch all
"sum" to "max". The resulting algorithm is called max-product VE.

- We shall consider two different extensions beyond VE:
1. Inference on arbitrary MRFs? ~~ Junction tree algorithm.

2. Compute all node/factor marginals at one shot? ~~ Belief propagation.
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Junction Tree

- For an undirected graph G = (V, £), the junction tree of G is a tree T s.t.
1. The nodes of T consist of the maximal cliques of G.

2. The edge S; between two nodes C;, C; of 7 (i.e. two maximal cliques of
G) is given by S; = C; N C; (known as the running intersection property).

- A graph is triangulated if every cycle of length > 4 has a chord. (A chord is
an edge that is not part of the cycle but connects two vertices of the cycle.)

- Theorem [Lauritzen '96]: A graph has a junction tree iff it is triangulated.

Figure:' (a) Original graph; (b) Triangulated graph; (c) Junction tree for the graph in (b).

'Wainwright and Jordan, “Graphical Models, Exponential Families, and Variational Inference”.
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Junction Tree Algorithm

Sum-product message passing on a junction tree 7 appears like:

mC,—>C/ yC/\C Z 7vbC, yC, H ka—>Ci(yC/\Ck)°
yeic; CkeNT(C)\{Cj}

Overall junction tree algorithm for exact inference on an arbitrary MRF:
1. Given an MRF with cycles, triangulate it by adding edges as necessary.
2. Form a junction tree T for the triangulated MRF.

3. Run VE on the junction tree 7.
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Belief Propagation on Tree Factor Graphs?
B

. Factor graph G = (V, F, £): assumed to be a tree.
- Neighbors of a variable or factor node:

Ng(i)={F e F:(i,F) € &},
Ng(F)={ieV:(i,F)e&}.

- (Log-domain) energies: Er(yr) = —log ¢or(¥F).

2|llustrations for BP are extracted from [Nowozin/Lampert '11].
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BP: Leaf-to-Root Stage

0. Pick Y, € V as the tree root (e.g. Y, in the figure).

1a. Schedule the leaf-to-root messages.

Figure: Belief propagation: leaf-to-root stage.

1b. Compute all leaf-to-root messages (detailed in the next slide).

PGM SS19 : Il : Inference on Graphical Models

11



Computer Vision & Artificial Intelligence

@ Department of Informatics
[~

Technical University of Munich

BP: Compute Messages

- Compute variable-to-factor message:

qi-r(yi) = Z rei(Yi)-

FreNg(N\{F}

- Compute factor-to-variable message:

re—i(yi) =log ) exp ( — Er(ye)+ ) (7/’—>F(YF))-

YF\(i} "eNg(F)\{i}
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BP: Compute the Partition Function

Figure: Belief propagation: leaf-to-root stage.

1c. Compute the log partition function:

log Z = log Z exp ( Z rF_>,(y,)).

Yr FeNg(r)
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BP: Root-to-Leaf Stage

2a. Schedule the root-to-leaf messages.

Figure: Belief propagation: root-to-leaf stage.

2b. Compute the root-to-leaf messages using the same formulas on page 12.
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BP: Compute Factor / Variable Marginals

2c. Alongside Step 2b, combine messages and compute factor marginals:

pr(yr) = p(yF) = exp ( — Er(ye)+ Y Gisr(yi) — log Z),
ieNg(F)

as well as variable marginals:

pily) = plyi) =exp (3 reily) —log Z).
FeNg(i)

Figure: (left) Factor marginal; (right) Variable marginal.
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BP on Pairwise MRFs

On a pairwise MRF ‘H = (V, £), the joint distribution is factorized by

—exp( ZEy, ZE,,y,,yj IogZ).

ey (ij)e€

BP on such pairwise MRF can be simplified:

- Node-to-node message is computed by

mii(y) =log Y exp (— B~ Eyviy) + Y. me(n)).

Yi keNx(\{/}
- Node marginal is computed by

pi(yi) = exp ( —E(y)+ Y mi(yi) —log Z)-

kGNH(i)
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Further Reading

. Koller & Friedman, Chapters 9, 10.

« Murphy, Chapter 20.

- Nowozin & Lampert, Section 3.1.
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