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Motivation
– Many computer vision tasks boil down to inference on graphical models.
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Stereo matching

Inpainting Super-resolution

1. Probabilistic inference: compute marginal distribution

p(y) =
∑

x

p(y , x).

2. MAP inference: compute maximum of conditional distribution

arg max
y

p(y |x).
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Exact Inference
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Outline of the Section

• Basic idea: Variable elimination.

• Junction tree algorithm on arbitrary MRFs.

• Belief propagation on tree factor graphs.
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Example: Marginal Query on a "Chain" MRF

Joint distribution represented by MRF:

p(y1, y2, y3, y4) =
1
Z
φ1(y1) · φ12(y1, y2) · φ23(y2, y3) · φ34(y3, y4) · φ4(y4).

Query about marginal distribution p(y2) = ?
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Variable Elimination
Apply variable elimination (VE) to the marginal query:

p(y2) =
∑

y1,y3,y4

p(y1, y2, y3, y4)

=
∑

y1,y3,y4

1
Z
φ1(y1)φ12(y1, y2)φ23(y2, y3)φ34(y3, y4)φ4(y4)

=
1
Z

∑
y1

(
φ1(y1)φ12(y1, y2)

)
︸ ︷︷ ︸

=: m1→2(y2)

∑
y3

(
φ23(y2, y3)

∑
y4

(
φ34(y3, y4)φ4(y4)

)
︸ ︷︷ ︸

=: m4→3(y3)

)

=
1
Z

m1→2(y2)
∑

y3

(
φ23(y2, y3)m4→3(y3)

)
︸ ︷︷ ︸

=: m3→2(y2)

=
1
Z

m1→2(y2)m3→2(y2),

Z =
∑

y2

m1→2(y2)m3→2(y2).
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Variable Elimination

y1 y2 y3 y4
F12 F23 F34 F4F1

• This algorithm is called sum-product VE.

• Sum-product VE yields exact inference (of one node marginal) on any
tree-structured factor graph.

• A similar algorithm can be derived for MAP inference – simply switch all
"sum" to "max". The resulting algorithm is called max-product VE.

• We shall consider two different extensions beyond VE:

1. Inference on arbitrary MRFs?  Junction tree algorithm.

2. Compute all node/factor marginals at one shot?  Belief propagation.
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Junction Tree
• For an undirected graph G = (V , E), the junction tree of G is a tree T s.t.

1. The nodes of T consist of the maximal cliques of G.

2. The edge Sij between two nodes Ci ,Cj of T (i.e. two maximal cliques of
G) is given by Sij = Ci ∩ Cj (known as the running intersection property).

• A graph is triangulated if every cycle of length ≥ 4 has a chord. (A chord is
an edge that is not part of the cycle but connects two vertices of the cycle.)

• Theorem [Lauritzen ’96]: A graph has a junction tree iff it is triangulated.

Figure:1 (a) Original graph; (b) Triangulated graph; (c) Junction tree for the graph in (b).
1Wainwright and Jordan, “Graphical Models, Exponential Families, and Variational Inference”.
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Junction Tree Algorithm

Sum-product message passing on a junction tree T appears like:

mCi→Cj(yCj\Ci) =
∑
yCi\Cj

ψCi(yCi)
∏

Ck∈NT (Ci)\{Cj}

mCk→Ci(yCi\Ck).

Overall junction tree algorithm for exact inference on an arbitrary MRF:

1. Given an MRF with cycles, triangulate it by adding edges as necessary.

2. Form a junction tree T for the triangulated MRF.

3. Run VE on the junction tree T .
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Belief Propagation on Tree Factor Graphs2

• Factor graph G = (V ,F , E): assumed to be a tree.

• Neighbors of a variable or factor node:

NG(i) = {F ∈ F : (i,F ) ∈ E},
NG(F ) = {i ∈ V : (i,F ) ∈ E}.

• (Log-domain) energies: EF(yF) = − logφF(yF).
2Illustrations for BP are extracted from [Nowozin/Lampert ’11].
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BP: Leaf-to-Root Stage

0. Pick Yr ∈ V as the tree root (e.g. Ym in the figure).

1a. Schedule the leaf-to-root messages.

Figure: Belief propagation: leaf-to-root stage.

1b. Compute all leaf-to-root messages (detailed in the next slide).
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BP: Compute Messages
• Compute variable-to-factor message:

qi→F(yi) =
∑

F ′∈NG(i)\{F}

rF ′→i(yi).

• Compute factor-to-variable message:

rF→i(yi) = log
∑
yF\{i}

exp
(
− EF(yF) +

∑
i ′∈NG(F )\{i}

qi ′→F(yF)
)
.
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BP: Compute the Partition Function

Figure: Belief propagation: leaf-to-root stage.

1c. Compute the log partition function:

log Z = log
∑

yr

exp
( ∑

F∈NG(r)

rF→r(yr)
)
.
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BP: Root-to-Leaf Stage

2a. Schedule the root-to-leaf messages.

Figure: Belief propagation: root-to-leaf stage.

2b. Compute the root-to-leaf messages using the same formulas on page 12.
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BP: Compute Factor / Variable Marginals
2c. Alongside Step 2b, combine messages and compute factor marginals:

µF(yF) := p(yF) = exp
(
− EF(yF) +

∑
i∈NG(F )

qi→F(yi)− log Z
)
,

as well as variable marginals:

µi(yi) := p(yi) = exp
( ∑

F∈NG(i)

rF→i(yi)− log Z
)
.

Figure: (left) Factor marginal; (right) Variable marginal.
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BP on Pairwise MRFs

On a pairwise MRF H = (V , E), the joint distribution is factorized by

p(y) = exp
(
−
∑
i∈V

Ei(yi)−
∑
(i,j)∈E

Eij(yi , yj)− log Z
)
.

BP on such pairwise MRF can be simplified:

• Node-to-node message is computed by

mi→j(yj) = log
∑

yi

exp
(
− Ei(yi)− Eij(yi , yj) +

∑
k∈NH(i)\{j}

mk→i(yi)
)
.

• Node marginal is computed by

µi(yi) = exp
(
− Ei(yi) +

∑
k∈NH(i)

mk→i(yi)− log Z
)
.
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Further Reading

• Koller & Friedman, Chapters 9, 10.

• Murphy, Chapter 20.

• Nowozin & Lampert, Section 3.1.
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