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Motivation
– Many computer vision tasks boil down to inference on graphical models.
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Stereo matching

Inpainting Super-resolution

1. Probabilistic inference: compute marginal distribution

p(y) =
∑

x

p(y , x).

2. MAP inference: compute maximum of conditional distribution

arg max
y

p(y |x).
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Exact Inference
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Outline of the Section

• Basic idea: Variable elimination.

• Junction tree algorithm on arbitrary MRFs.

• Belief propagation on tree factor graphs.
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Example: Marginal Query on a "Chain" MRF

Joint distribution represented by MRF:

p(y1, y2, y3, y4) =
1
Z
φ1(y1) · φ12(y1, y2) · φ23(y2, y3) · φ34(y3, y4) · φ4(y4).

Query about marginal distribution p(y2) = ?
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Variable Elimination
Apply variable elimination (VE) to the marginal query:

p(y2) =
∑

y1,y3,y4

p(y1, y2, y3, y4)

=
∑

y1,y3,y4

1
Z
φ1(y1)φ12(y1, y2)φ23(y2, y3)φ34(y3, y4)φ4(y4)

=
1
Z

∑
y1

(
φ1(y1)φ12(y1, y2)

)
︸ ︷︷ ︸

=: m1→2(y2)

∑
y3

(
φ23(y2, y3)

∑
y4

(
φ34(y3, y4)φ4(y4)

)
︸ ︷︷ ︸

=: m4→3(y3)

)

=
1
Z

m1→2(y2)
∑

y3

(
φ23(y2, y3)m4→3(y3)

)
︸ ︷︷ ︸

=: m3→2(y2)

=
1
Z

m1→2(y2)m3→2(y2),

Z =
∑

y2

m1→2(y2)m3→2(y2).
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Variable Elimination and Beyond

y1 y2 y3 y4
F12 F23 F34 F4F1

• This algorithm is called sum-product VE.

• Sum-product VE yields exact inference (of one node marginal) on any
tree-structured factor graph.

• Observed nodes (a.k.a. evidence) can be introduced as reduced factors.

• A similar algorithm can be derived for MAP inference – simply switch all
"sum" to "max". The resulting algorithm is called max-product VE.

• We shall consider two different extensions beyond VE:

1. Inference on arbitrary MRFs?  Junction tree algorithm.

2. Compute all node/factor marginals at one shot?  Belief propagation.
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Junction Tree
• For an undirected graph H = (V , E), the junction tree of H is a tree T s.t.

1. The nodes of T consist of the maximal cliques of H.

2. The edge Sij between two nodes Ci ,Cj of T (i.e. two maximal cliques of
H) is given by Sij = Ci ∩ Cj (known as the running intersection property).

• H is triangulated if every cycle of length ≥ 4 has a chord. (A chord is an
edge that is not part of the cycle but connects two vertices of the cycle.)

• Theorem [Lauritzen ’96]: A graph has a junction tree iff it is triangulated.

Figure:1 (a) Original graph; (b) Triangulation of (a); (c) Junction tree for (b).
1Wainwright and Jordan, “Graphical Models, Exponential Families, and Variational Inference”.
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Junction Tree Algorithm (Sketch)

Sum-product message passing on a junction tree T appears like:

mCi→Cj (yCj∩Ci ) =
∑
yCi\Cj

φCi (yCi )
∏

Ck∈nbrT (Ci)\{Cj}

mCk→Ci (yCi∩Ck ).

Overall junction tree algorithm for exact inference on an arbitrary MRF:

1. Given an MRF with cycles, triangulate it by adding edges as necessary.

2. Form a junction tree T for the triangulated MRF.

3. Run VE on the junction tree T .
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Belief Propagation on Tree Factor Graphs2

• Factor graph G = (V ,F , E): assumed to be a tree.

• Neighbors of a variable or factor node:

nbrG(i) = {F ∈ F : (i,F ) ∈ E},
nbrG(F ) = {i ∈ V : (i,F ) ∈ E}.

• (Log-domain) energies: EF (yF ) = − logφF (yF ).
2Illustrations for BP are extracted from Nowozin & Lampert, 2011.

PGM SS19 : III : Inference on Graphical Models 10

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich



BP: Leaf-to-Root Stage

0. Pick Yr ∈ V as the tree root (e.g. Ym in the figure).

1a. Schedule the leaf-to-root messages.

Figure: Belief propagation: leaf-to-root stage.

1b. Compute all leaf-to-root messages (detailed in the next slide).
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BP: Compute Messages
• Compute variable-to-factor message:

qi→F (yi) =
∑

F ′∈nbrG(i)\{F}

rF ′→i(yi).

• Compute factor-to-variable message:

rF→i(yi) = log
∑
yF\{i}

exp
(
− EF (yF ) +

∑
i ′∈nbrG(F )\{i}

qi ′→F (yi ′)
)
.
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BP: Compute the Partition Function

Figure: Belief propagation: leaf-to-root stage.

1c. Compute the log partition function:

log Z = log
∑

yr

exp
( ∑

F∈nbrG(r)

rF→r(yr)
)
.
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BP: Root-to-Leaf Stage

2a. Schedule the root-to-leaf messages.

Figure: Belief propagation: root-to-leaf stage.

2b. Compute the root-to-leaf messages using the same formulas on page 12.
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BP: Compute Factor / Variable Marginals
2c. Alongside Step 2b, combine messages and compute factor marginals:

µF (yF ) := p(yF ) = exp
(
− EF (yF ) +

∑
i∈nbrG(F )

qi→F (yi)− log Z
)
,

as well as variable marginals:

µi(yi) := p(yi) = exp
( ∑

F∈nbrG(i)

rF→i(yi)− log Z
)
.

Figure: (left) Factor marginal; (right) Variable marginal.
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BP on Pairwise MRFs (as exercise)

For a pairwise MRF H = (V , E), the joint distribution is factorized by

p(y) = exp
(
−
∑
i∈V

Ei(yi)−
∑

(i,j)∈E

Eij(yi , yj)− log Z
)
.

BP on such pairwise MRF can be simplified:

• Variable-to-variable message is computed by

mi→j(yj) = log
∑

yi

exp
(
− Ei(yi)− Eij(yi , yj) +

∑
k∈nbrH(i)\{j}

mk→i(yi)
)
.

• Variable marginal is computed by

µi(yi) = exp
(
− Ei(yi) +

∑
k∈nbrH(i)

mk→i(yi)− log Z
)
.
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Further Reading

• Koller & Friedman, Chapters 9, 10.

• Murphy, Chapter 20.

• Nowozin & Lampert, Section 3.1.
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Approximate Inference
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Outline of this Section

• Basic idea: Variational inference.

• Mean field (MF) method.

• Loopy belief propagation (LBP).
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Approximation by Tractable Distributions
• Goal: probabilistic inference on joint distribution p(y) represented by general

MRF (i.e. possibly with loops).

• Instead of tackling the inference on p directly, we first seek for an
approximation q within a family Q consisting of "tractable" distributions:

q∗ = arg min
q∈Q

KL (q | p) .

• The Kullback-Leibler (KL) divergence (a.k.a. relative entropy) between
two distributions q, p (assuming p is a positive distribution) is defined by

KL (q | p) =
∑

y

q(y) log
q(y)

p(y)
.

• Basic properties of KL:
1. KL (q | p) = 0 iff p = q.
2. KL (q | p) ≥ 0 ∀q, p.
3. KL (· | ·) is not symmetric. Nor does it satisfy the triangle inequality.
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Preliminaries to Variational Inference
• Represented by a factor graph G = (V ,F , E), p takes the form

p(y) = exp
(
−
∑
F∈F

EF (yF )− log Z
)
.

• Plug p into KL divergence 

KL (q | p) =
∑

y

q(y) log
q(y)

p(y)
=
∑

y

q(y) log q(y) −
∑

y

q(y) log p(y)

= −H(q) +
∑
F∈F

∑
yF

µF [q](yF )EF (yF ) + log Z .

• H(q) is the entropy of distribution q.

• µF [q] is the marginal distribution of q over variables YF .

• FGibbs(q; p) := KL (q | p)− log Z = −H(q) +
∑

F∈F
∑

yF
µF [q](yF )EF (yF ) is

called the Gibbs free energy.

• KL (q | p) ≥ 0 ⇒ log Z is lower bounded by −FGibbs(q; p).
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Mean Field Approximation
In (naive) mean field method, Q consists of q factorized by only unaries:

q(y) =
∏
i∈V

qi(yi).

Figure: (left) Original factor graph; (right) (Naive) mean field approximation.

• Such q is "tractable" because {qi(yi)} provide variable marginals.

• Quick facts: H(q) =
∑
i∈V

H(qi) = −
∑
i∈V

∑
yi

qi(yi) log qi(yi),

µF [q](yF ) =
∏

i∈nbrG(F )

qi(yi).
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Mean Field (MF) Approximation

Derivation of MF approximation:

q∗ = arg min
q∈Q

KL (q | p) = arg min
q∈Q

F (q; p)

= arg min
q∈Q
−H(q) +

∑
F∈F

∑
yF

µF [q](yF )EF (yF )

= arg min
{qi}i∈V

∑
i∈V

∑
yi

qi(yi) log qi(yi) +
∑
F∈F

∑
yF

( ∏
i∈nbrG(F )

qi(yi)

)
EF (yF ).

Each qi lies in the probability simplex ∆i , i.e.

qi(yi) ≥ 0 ∀yi ,∑
yi

qi(yi) = 1.

The optimization can be resolved by coordinate descent (next slide).
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MF Update Formula
For each block qi , fix q̂i ′(yi ′) = qi ′(yi ′) ∀i ′ 6= i and solve:

q∗i = arg min
qi∈∆i

∑
yi

qi(yi) log qi(yi) +
∑

F∈nbrG(i)

∑
yF

( ∏
i ′∈nbrG(F )\{i}

q̂i ′(yi ′)

)
qi(yi)EF (yF ).

We obtain an analytical solution via Lagrange multiplier λ for
∑

yi
q∗i (yi) = 1:

q∗i (yi) = exp
(
− 1−

∑
F∈nbrG(i)

∑
yF\{i}

( ∏
i ′∈nbrG(F )\{i}

q̂i ′(yi ′)

)
EF (yF ) + λ

)
∝ exp

(
−

∑
F∈nbrG(i)

∑
yF\{i}

( ∏
i ′∈nbrG(F )\{i}

q̂i ′(yi ′)

)
EF (yF )

)
.
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Some Remarks on MF

• The term
∏

i ′∈nbrG(F )\{i} q̂i ′(yi ′) is taken to be 1 if nbrG(F )\{i} = ∅.

• For a pairwise MRF H, the MF update rule can be simplified as

q∗i (yi) ∝ exp
(
− Ei(yi)−

∑
j∈nbrH(i)

∑
yj

q̂j(yj)Eij(yi , yj)

)
.

• MF is an iterative procedure which converges to a locally optimal solution q∗.

• Upon convergence, {q∗i } directly provide (approximate) variable marginals.

• The tractable family Q can be more sophisticated than factorizations of
unaries in naive mean field.  Structured mean field approximation.
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From Belief Propagation to Loopy Belief Propagation

• Previously we have seen how belief propagation works on tree factor graphs.

• We can use similar update rules to derive loopy belief propagation (LBP).

• Although LBP does not guarantee the convergence (if at all) to the true
marginal, it often performs well and is widely used in practice3.

• In the following, we first present the LBP algorithm and then interpret it from
perspective of variational inference.

3Murphy et al., “Loopy Belief Propagation for Approximate Inference: An Empirical Study”.
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Loopy Belief Propagation
On a factor graph G = (V ,F , E), LBP proceeds as follows.

0. Initialize all variable-to-factor messages: qi→F (yi) = 0. Then iterate:

1. Compute all factor-to-variable messages:

rF→i(yi) = log
∑
yF\{i}

exp
(
− EF (yF ) +

∑
i ′∈nbrG(F )\{i}

qi ′→F (yi ′)
)
.

2. Compute all (normalized) variable-to-factor messages:

q̄i→F (yi) =
∑

F ′∈nbrG(i)\{F}

rF ′→i(yi),

δi→F = log
∑

yi

exp
(

q̄i→F (yi)
)
,

qi→F (yi) = q̄i→F (yi)− δi→F .
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Loopy Belief Propagation (cont’d)
3. Compute all factor marginals:

µF (yF ) ∝ exp
(
− EF (yF ) +

∑
i∈nbrG(F )

qi→F (yi)
)
.

4. Compute all variable marginals:

µi(yi) ∝ exp
( ∑

F∈nbrG(i)

rF→i(yi)
)
.

Differences compared to BP:

• The normalization constants in the computation of marginals differ at each
factor/variable.

• The log partition function is not directly available, but it can be approximated
by the Bethe free energy:

− log Z ≈ FBethe(µ; p) :=
∑
i∈V

(1− | nbrG(i)|)
∑

yi

µi(yi) logµi(yi)

+
∑
F∈F

∑
yF

µF (yF )
(

EF (yF ) + logµF (yF )
)
.
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Interpretation of LBP
On a pairwise MRF H = (V , E), LBP can be interpreted as an attempt to solve:

minimize
{µi}i∈V , {µij}(i,j)∈E

∑
i∈V

(1− | nbrH(i)|)
∑

yi

µi(yi) logµi(yi)

+
∑

(i,j)∈E

∑
yi ,yj

µij(yi , yj)
(

Eij(yi , yj) + logµij(yi , yj)
)

subject to µi(yi) ≥ 0, µij(yi , yj) ≥ 0,
∑

yi

µi(yi) = 1,
∑

yi

µij(yi , yj) = µj(yj).

• The constraints impose local consistency between node marginals {µi} and
edge marginals {µij}.

• However, {µi}, {µij} under these constraints are may not be marginals of
any joint distribution on H (i.e. outer approximation of marginal polytope).

• The solution for the optimization, if exists, has an analytical form (derived via
Lagrangian multipliers), from which one can recover LBP updates.

• An amazing theory on variational inference arise in this context — we point
those interested to the "monster" paper [Jordan & Wainwright, 2008].
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LBP vs. MF
(+) (Naive) MF optimizes over only variable marginals; LBP optimizes over

variable and factor marginals under local consistency constraints.

(+) LBP does exact inference on factor graphs without loops; MF is exact on a
strict subclass of factor graphs, on which all true factor marginals are
factorized by µF (yF ) =

∏
i∈nbrG(F ) µi(yi) (hence an inner approximation of

marginal polytope).

(+) While both being approximate inference techniques, LBP tends to be more
accurate than MF in practice.

(−) MF provides a lower bound of the log partition function (given by negative
Gibbs free energy), while LBP does not.

(−) Compared to LBP, it is easier to extend MF to distributions other than
discrete and Gaussian, due to the simplicity of working with only variable
marginals.
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Further Reading

• Murphy, Chapters 21, 22.

• Nowozin & Lampert, Sections 3.2, 3.3.

• Jordan & Wainwright, Chapters 4, 5.

• Koller & Friedman, Chapter 11.
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