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Motivation

— Many computer vision tasks boil down to inference on graphical models.

Denoising Optical flow Stereo matching

1. Probabilistic inference: compute marginal distribution
=> ply.x
X

2. MAP inference: compute maximum of conditional distribution

arg max p(y|x).
y
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Exact Inference
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Outline of the Section

- Basic idea: Variable elimination.
- Junction tree algorithm on arbitrary MRFs.

- Belief propagation on tree factor graphs.

PGM SS19 : Il : Inference on Graphical Models



Computer Vision & Artificial Intelligence

@ Department of Informatics
Technical University of Munich

Example: Marginal Query on a "Chain" MRF

Joint distribution represented by MRF:

1
p(y1, Y2, Y3, Ya) = E¢1 (V1) - P12(y1, ¥2) - P23(V2, ¥3) - 34(Va, Ya) - Palya).

LOL OO O

Query about marginal distribution p(y>) =7
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Variable Elimination

Apply variable elimination (VE) to the marginal query:
p(y2) — Z ,0(}/1 » Y2, V3, y4)

Yi.aYe
_ Z 12¢1(y1)¢12(y1,yz)(bzs(}/z,Y3)¢34(Y37Y4)¢4(Y4)
y1 Y s
Z Z (¢1 y1)d12(y4, Y2)> Ey: ((/523(}’2»}’3) Ey: (634(y3, ya)Pa(ya)) )
— My a(ys) a = —: My a(s) ’
- %m1 La(ye) %: (¢23(y2, Y3)m4%3(}’3))
1 = —: ms_2(y2) ”
= > S2(Y2)Masa(y2),
Z = m_a(y2)msa(y2).

Y2
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Variable Elimination and Beyond

>»<
OO OO

. This algorithm is called sum-product VE.

- Sum-product VE yields exact inference (of one node marginal) on any
tree-structured factor graph.

- Observed nodes (a.k.a. evidence) can be introduced as reduced factors.

. A similar algorithm can be derived for MAP inference — simply switch all
"sum" to "max". The resulting algorithm is called max-product VE.

- We shall consider two different extensions beyond VE:

1. Inference on arbitrary MRFs? ~~ Junction tree algorithm.

2. Compute all node/factor marginals at one shot? ~~ Belief propagation.
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Junction Tree

- For an undirected graph H = (V, £), the junction tree of H is atree T s.i.
1. The nodes of T consist of the maximal cliques of H.

2. The edge S; between two nodes C;, C; of 7 (i.e. two maximal cliques of
H) is given by S; = C; N C; (known as the running intersection property).

- ‘H is triangulated if every cycle of length > 4 has a chord. (A chord is an
edge that is not part of the cycle but connects two vertices of the cycle.)

- Theorem [Lauritzen '96]: A graph has a junction tree iff it is triangulated.

Figure:! (a) Original graph; (b) Triangulation of (a); (c) Junction tree for (b).

'Wainwright and Jordan, “Graphical Models, Exponential Families, and Variational Inference”.
PGM SS19 : Il : Inference on Graphical Models



Computer Vision & Artificial Intelligence
@ Department of Informatics
Technical University of Munich

Junction Tree Algorithm (Sketch)

Sum-product message passing on a junction tree 7 appears like:

me.—c(Yene) = E vc(¥e) H me,—c(Yenc)-
ycl\c C/(Ean’T(C/)\{Cj}

Overall junction tree algorithm for exact inference on an arbitrary MRF:
1. Given an MRF with cycles, triangulate it by adding edges as necessary.
2. Form a junction tree T for the triangulated MRF.

3. Run VE on the junction tree 7.
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Belief Propagation on Tree Factor Graphs?
B

. Factor graph G = (V, F, £): assumed to be a tree.
- Neighbors of a variable or factor node:

nbrg(i) ={F e F:(i,F) € £},
nbrg(F)={ieV:(i,F)e&}

- (Log-domain) energies: Er(yr) = —log ¢or(¥F).

2|llustrations for BP are extracted from Nowozin & Lampert, 2011.
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BP: Leaf-to-Root Stage

0. Pick Y, € V as the tree root (e.g. Y, in the figure).

1a. Schedule the leaf-to-root messages.

Figure: Belief propagation: leaf-to-root stage.

1b. Compute all leaf-to-root messages (detailed in the next slide).
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BP: Compute Messages

- Compute variable-to-factor message:

qi-r(yi) = Z rei(yi)-

F'enbrg(i)\{F}

- Compute factor-to-variable message:

re—i(yi) =log ) exp ( —Er(yr)+ Y qfqp(y,-/)).

YR\ i"enbrg(F)\{/}
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BP: Compute the Partition Function

Figure: Belief propagation: leaf-to-root stage.

1c. Compute the log partition function:

log Z = log Z exp < Z rF_>,(y,)).

Yr Fenbrg(r)
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BP: Root-to-Leaf Stage

2a. Schedule the root-to-leaf messages.

Figure: Belief propagation: root-to-leaf stage.

2b. Compute the root-to-leaf messages using the same formulas on page 12.
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2c. Alongside Step 2b, combine messages and compute factor marginals:

ne(ye) == p(ye) = exp ( Er(yr)+ Y Qimr(yi) — log Z)
ienbrg(F)

as well as variable marginals:

pilys) = ply) =exp (D reiyi) —log Z).

Fenbrg(i)

Figure: (left) Factor marginal; (right) Variable marginal.
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BP on Pairwise MRFs (as exercise)

For a pairwise MRF H = (V, £), the joint distribution is factorized by

—exp( ZEy, ZE,,y,,yj IogZ).

ey (ij)e€

BP on such pairwise MRF can be simplified:

- Variable-to-variable message is computed by

m,-_>j(yj) = log Z exp ( — E,-(y,-) — E,-j(y,-, y,) + Z mk—>i(yi)>-

Vi kenbry (I)\{/}

- Variable marginal is computed by

pi(yi) = exp ( —E(y)+ > milyi) —log Z)-

kenbry (i)
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Further Reading

. Koller & Friedman, Chapters 9, 10.

« Murphy, Chapter 20.

- Nowozin & Lampert, Section 3.1.
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Approximate Inference
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Outline of this Section

. Basic idea: Variational inference.

- Mean field (MF) method.

- Loopy belief propagation (LBP).

PGM SS19 : Il : Inference on Graphical Models
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- Goal: probabilistic inference on joint distribution p(y) represented by general
MRF (i.e. possibly with loops).

- Instead of tackling the inference on p directly, we first seek for an
approximation g within a family O consisting of "tractable" distributions:

g =argminKL(q|p).
qeQ

- The Kullback-Leibler (KL) divergence (a.k.a. relative entropy) between
two distributions g, p (assuming p is a positive distribution) is defined by

L(qlp) = Zq )log = ;

- Basic properties of KL:

1. KL(g|p) =0iff p=q.
2. KL(q|p) = 0Vaq,p.
3. KL (-|-) is not symmetric. Nor does it satisfy the triangle inequality.

PGM SS19 : Il : Inference on Graphical Models 20
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Preliminaries to Variational Inference
- Represented by a factor graph G = (V, F, £), p takes the form

—exp( ZEF YF) — IogZ).

- Plug p into KL divergence ~-

KL(q|p) = Zq Iog Zq )log q(y Zq )log p(y
= —H(q) + Z Z MF[CI] (vF)EF(yF) + log Z-

FeF Yyr

- H(q) is the entropy of distribution q.

- 1ue[q] is the marginal distribution of g over variables Y.

+ Faioos(q; p) == KL(q|p) —logZ = —H(q) + > _rc7 D, 1rlal(VF)EF(yF) is
called the Gibbs free energy.

- KL(g|p) > 0 = logZ is lower bounded by —Fginns(q; p)-

PGM SS19 : Il : Inference on Graphical Models 21
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Mean Field Approximation
In (naive) mean field method, O consists of g factorized by only unaries:

= ][ ay).

ey

Figure: (left) Original factor graph; (right) (Naive) mean field approximation.

- Such g is "tractable" because {qi(y;)} provide variable marginals.

- Quick facts:  H(q) = Z H(qi) = — Z Z qi(yi) log qi(yi),

ey i€V Vi
pelddve) = 1] aiv)-

ienbrg(F)
PGM SS19 : Il : Inference on Graphical Models 22



Computer Vision & Artificial Intelligence
@ Department of Informatics

Technical University of Munich

Mean Field (MF) Approximation

Derivation of MF approximation:
q* = arg min KL(g|p)=arg min F(q; p)

= argmin —H(qg
qeQ DS ZMF[Q] (Ye)Er(yr)
FeF Yyr

= arg min Z Z qi(yi) log qi(yi) + Z Z ( H q,-(y/)) Er(yF).

taikiev i€V yi FEF yr ienbrg(F)

Each g; lies in the probability simplex A;, i.e.
qi(yi) = 0 Vy;,

> aqily) =1.
Yi

The optimization can be resolved by coordinate descent (next slide).
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For each block g, fix qi(y;) = qi(y;) Vi’ # i and solve:

g; = arg min Z aly)logai(y)+ > Y. ( 11 ?Jw(yif)> Gi(¥i) EF(Ve)-

Fenbrg(i) YF i'enbrg(F)\{i}
F gy

O 00

Qn o qj
7

We obtain an analytical solution via Lagrange multiplier A for >, q;(y;) = 1:

a)=ep(~1- 3 Z( [T @) e

Fenbrg(i) Yr\(iy ~ i'enbrg(F)\{i}

o< exp ( -y Y ( 11 CA?/f(Yi’)) EF(yF))°

Fenbrg(i) Ye\(in  ~ i'enbrg(F)\{i}
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Some Remarks on MF

+ The term [ [ycnory(r)\ 1y Gr(¥i) is taken to be 1 if nbrg(F)\{i} = 0.

. For a pairwise MRF H, the MF update rule can be simplified as

- > >.aw uyuy/)

q; (¥i) o< exp (
jEner Yj

- MF is an iterative procedure which converges to a locally optimal solution g*.
- Upon convergence, {q; } directly provide (approximate) variable marginals.

- The tractable family @ can be more sophisticated than factorizations of
unaries in naive mean field. ~» Structured mean field approximation.
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From Belief Propagation to Loopy Belief Propagation

- Previously we have seen how belief propagation works on tree factor graphs.
- We can use similar update rules to derive loopy belief propagation (LBP).

- Although LBP does not guarantee the convergence (if at all) to the true
marginal, it often performs well and is widely used in practice.

- In the following, we first present the LBP algorithm and then interpret it from
perspective of variational inference.

SMurphy et al., “Loopy Belief Propagation for Approximate Inference: An Empirical Study”.
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Loopy Belief Propagation

On a factor graph G = (V, F, £), LBP proceeds as follows.

0. Initialize all variable-to-factor messages: qgi_.£(y;) = 0. Then iterate:

1. Compute all factor-to-variable messages:

re—i(yi) = log Z exp ( Er(yF) + Z q,qp(y,v)).

YR\{i} i'enbrg(F)\{/i}

2. Compute all (normalized) variable-to-factor messages:
qi-r(yi) = Z rei(Yi),
F'enbrg(i)\{F}

Sir =log ) " exp (C_]i—>F(}/i)),
Yi
qirF(Yi) = Qisr(Yi) — disF.

PGM SS19 : Il : Inference on Graphical Models
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Loopy Belief Propagation (cont'd)

3. Compute all factor marginals:
MF(}/F) X exp( EF }/F Z QI—>F Yi )

IEHng )
4. Compute all variable marginals:

piyi) o< exp ( > fF—>i(Yi)>-
Fenbrg(i)

Differences compared to BP:

- The normalization constants in the computation of marginals differ at each
factor/variable.

- The log partition function is not directly available, but it can be approximated
by the Bethe free energy:

—10g Z ~ Faetme(i: p) == > (1 — | nbrg(i)) " ui(yi) log pi(y:)
IS2% Yi

4 Z Z ne(Ye ( (vF) + log MF(J’F))

PGM SS19 : Il : Inference on Graphical Models 28



Computer Vision & Artificial Intelligence
@ Department of Informatics
Technical University of Munich

Interpretation of LBP
On a pairwise MRF H = (V, 6) LBP can be interpreted as an attempt to solve:

minimize 1 — | nbry( )lo y
{nitiev, {ritijee ( | H Z,LL, y/ gﬂ/( I)

ey
+ 3wy, ( (Vi 7) + 109 14y, 1))
(Ij Eg Yi,Yj
subject to 1;(y;) > 0, wi(yvi,y;) >0, Zui(y/') =1, Zﬂij(}/iayj) = 1i(¥))-

Yi Yi
- The constraints impose local consistency between node marginals {x;} and
edge marginals {1}

- However, {u;}, {ujj} under these constraints are may not be marginals of
any joint distribution on A (i.e. outer approximation of marginal polytope).

. The solution for the optimization, if exists, has an analytical form (derived via
Lagrangian multipliers), from which one can recover LBP updates.

- An amazing theory on variational inference arise in this context — we point

those interested to the "monster” paper [Jordan & Wainwright, 2008].
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LBP vs. MF

(+) (Naive) MF optimizes over only variable marginals; LBP optimizes over
variable and factor marginals under local consistency constraints.

(+) LBP does exact inference on factor graphs without loops; MF is exact on a
strict subclass of factor graphs, on which all true factor marginals are
factorized by 11r(¥F) = [ Licnbro(F) 1£i(¥i) (hence an inner approximation of
marginal polytope).

(+) While both being approximate inference techniques, LBP tends to be more
accurate than MF in practice.

(—) MF provides a lower bound of the log partition function (given by negative
Gibbs free energy), while LBP does not.

(—) Compared to LBP, it is easier to extend MF to distributions other than
discrete and Gaussian, due to the simplicity of working with only variable
marginals.
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Further Reading

« Murphy, Chapters 21, 22.

- Nowozin & Lampert, Sections 3.2, 3.3.

- Jordan & Wainwright, Chapters 4, 5.

. Koller & Friedman, Chapter 11.

PGM SS19 : Il : Inference on Graphical Models

31



	Exact Inference
	Approximate Inference

