

III: Inference on Graphical Models

Tao Wu, Yuesong Shen, Zhenzhang Ye

Computer Vision & Artificial Intelligence Technical University of Munich

Motivation

Many computer vision tasks boil down to inference on graphical models.

Denoising

Optical flow

Stereo matching

Inpainting

Super-resolution

1. Probabilistic inference: compute marginal distribution

$$p(y) = \sum_{x} p(y, x).$$

2. MAP inference: compute maximum of conditional distribution

$$arg \max_{y} p(y|x).$$

Exact Inference

Outline of the Section

- Basic idea: Variable elimination.
- Junction tree algorithm on arbitrary MRFs.
- Belief propagation on tree factor graphs.

Example: Marginal Query on a "Chain" MRF

Joint distribution represented by MRF:

$$p(y_1, y_2, y_3, y_4) = \frac{1}{Z} \phi_1(y_1) \cdot \phi_{12}(y_1, y_2) \cdot \phi_{23}(y_2, y_3) \cdot \phi_{34}(y_3, y_4) \cdot \phi_4(y_4).$$

Query about marginal distribution $p(y_2) = ?$

Variable Elimination

Apply variable elimination (VE) to the marginal query:

$$\begin{split} \rho(y_2) &= \sum_{y_1, y_3, y_4} \rho(y_1, y_2, y_3, y_4) \\ &= \sum_{y_1, y_3, y_4} \frac{1}{Z} \phi_1(y_1) \phi_{12}(y_1, y_2) \phi_{23}(y_2, y_3) \phi_{34}(y_3, y_4) \phi_4(y_4) \\ &= \frac{1}{Z} \sum_{\underbrace{y_1}} \left(\phi_1(y_1) \phi_{12}(y_1, y_2) \right) \sum_{y_3} \left(\phi_{23}(y_2, y_3) \sum_{\underbrace{y_4}} \left(\phi_{34}(y_3, y_4) \phi_4(y_4) \right) \right) \\ &= : m_{1 \to 2}(y_2) \\ &= : m_{1 \to 2}(y_2) \sum_{\underbrace{y_3}} \left(\phi_{23}(y_2, y_3) m_{4 \to 3}(y_3) \right) \\ &= : m_{3 \to 2}(y_2) \\ &= \frac{1}{Z} m_{1 \to 2}(y_2) m_{3 \to 2}(y_2), \\ Z &= \sum m_{1 \to 2}(y_2) m_{3 \to 2}(y_2). \end{split}$$

Variable Elimination and Beyond

- This algorithm is called sum-product VE.
- Sum-product VE yields *exact* inference (of one node marginal) on any *tree-structured factor graph*.
- Observed nodes (a.k.a. evidence) can be introduced as reduced factors.
- A similar algorithm can be derived for MAP inference simply switch all "sum" to "max". The resulting algorithm is called max-product VE.
- We shall consider two different extensions beyond VE:
 - 1. Inference on arbitrary MRFs? → Junction tree algorithm.
 - 2. Compute all node/factor marginals at one shot? → Belief propagation.

Junction Tree

- For an undirected graph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$, the **junction tree** of \mathcal{H} is a tree \mathcal{T} s.t.
 - 1. The nodes of \mathcal{T} consist of the *maximal cliques* of \mathcal{H} .
 - 2. The edge S_{ij} between two nodes C_i , C_j of \mathcal{T} (i.e. two maximal cliques of \mathcal{H}) is given by $S_{ij} = C_i \cap C_j$ (known as the *running intersection property*).
- \mathcal{H} is **triangulated** if every cycle of length \geq 4 has a *chord*. (A chord is an edge that is not part of the cycle but connects two vertices of the cycle.)
- Theorem [Lauritzen '96]: A graph has a junction tree iff it is triangulated.

Figure: (a) Original graph; (b) Triangulation of (a); (c) Junction tree for (b).

¹Wainwright and Jordan, "Graphical Models, Exponential Families, and Variational Inference". PGM SS19: III: Inference on Graphical Models

Junction Tree Algorithm (Sketch)

Sum-product message passing on a junction tree \mathcal{T} appears like:

$$m_{C_i o C_j}(y_{C_j \cap C_i}) = \sum_{y_{C_i \setminus C_i}} \phi_{C_i}(y_{C_i}) \prod_{C_k \in \mathsf{nbr}_{\mathcal{T}}(C_i) \setminus \{C_j\}} m_{C_k o C_i}(y_{C_i \cap C_k}).$$

Overall junction tree algorithm for exact inference on an arbitrary MRF:

- 1. Given an MRF with cycles, triangulate it by adding edges as necessary.
- 2. Form a junction tree \mathcal{T} for the triangulated MRF.
- 3. Run VE on the junction tree \mathcal{T} .

Belief Propagation on Tree Factor Graphs²

- Factor graph $\mathcal{G} = (\mathcal{V}, \mathcal{F}, \mathcal{E})$: assumed to be a tree.
- Neighbors of a variable or factor node:

$$\mathsf{nbr}_{\mathcal{G}}(i) = \{ F \in \mathcal{F} : (i, F) \in \mathcal{E} \}, \\ \mathsf{nbr}_{\mathcal{G}}(F) = \{ i \in \mathcal{V} : (i, F) \in \mathcal{E} \}.$$

• (Log-domain) energies: $E_F(y_F) = -\log \phi_F(y_F)$.

²Illustrations for BP are extracted from Nowozin & Lampert, 2011. PGM SS19: III: Inference on Graphical Models

BP: Leaf-to-Root Stage

- 0. Pick $Y_r \in \mathcal{V}$ as the tree root (e.g. Y_m in the figure).
- 1a. Schedule the leaf-to-root messages.

Figure: Belief propagation: leaf-to-root stage.

1b. Compute all leaf-to-root messages (detailed in the next slide).

BP: Compute Messages

Compute variable-to-factor message:

$$q_{i o F}(y_i) = \sum_{F' \in \mathsf{nbr}_{\mathcal{G}}(i) \setminus \{F\}} r_{F' o i}(y_i).$$

$$A = \underbrace{r_{A o Y_i}}_{r_{B o Y_i}} \underbrace{q_{Y_i o F}}_{r_{B o Y_i}} F$$

Compute factor-to-variable message:

$$r_{F o i}(y_i) = \log \sum_{y_{F \setminus \{i\}}} \exp \left(-E_F(y_F) + \sum_{i' \in \mathsf{nbr}_{\mathcal{G}}(F) \setminus \{i\}} q_{i' o F}(y_{i'}) \right).$$

BP: Compute the Partition Function

Figure: Belief propagation: leaf-to-root stage.

1c. Compute the log partition function:

$$\log Z = \log \sum_{y_r} \exp \Big(\sum_{F \in \mathsf{nbr}_{\mathcal{G}}(r)} r_{F \to r}(y_r) \Big).$$

BP: Root-to-Leaf Stage

2a. Schedule the root-to-leaf messages.

Figure: Belief propagation: root-to-leaf stage.

2b. Compute the root-to-leaf messages using the same formulas on page 12.

BP: Compute Factor / Variable Marginals

2c. Alongside Step 2b, combine messages and compute factor marginals:

$$\mu_F(y_F) := p(y_F) = \exp\Big(-E_F(y_F) + \sum_{i \in \mathsf{nbr}_\mathcal{G}(F)} q_{i o F}(y_i) - \log Z\Big),$$

as well as variable marginals:

$$\mu_i(y_i) := p(y_i) = \exp\Big(\sum_{F \in \mathsf{nbr}_\mathcal{G}(i)} r_{F o i}(y_i) - \log Z\Big).$$

Figure: (left) Factor marginal; (right) Variable marginal.

BP on Pairwise MRFs (as exercise)

For a pairwise MRF $\mathcal{H} = (\mathcal{V}, \mathcal{E})$, the joint distribution is factorized by

$$p(y) = \exp\Big(-\sum_{i\in\mathcal{V}} E_i(y_i) - \sum_{(i,j)\in\mathcal{E}} E_{ij}(y_i,y_j) - \log Z\Big).$$

BP on such pairwise MRF can be simplified:

Variable-to-variable message is computed by

$$m_{i
ightarrow j}(y_j) = \log\sum_{y_i} \exp\Big(-E_i(y_i) - E_{ij}(y_i,y_j) + \sum_{k\in \mathsf{nbr}_{\mathcal{H}}(i)\setminus\{j\}} m_{k
ightarrow i}(y_i)\Big).$$

Variable marginal is computed by

$$\mu_i(y_i) = \exp\Big(-E_i(y_i) + \sum_{k \in \mathsf{nbr}_{\mathcal{H}}(i)} m_{k \to i}(y_i) - \log Z\Big).$$

Further Reading

- Koller & Friedman, Chapters 9, 10.
- Murphy, Chapter 20.
- Nowozin & Lampert, Section 3.1.

Approximate Inference

Outline of this Section

- Basic idea: Variational inference.
- Mean field (MF) method.
- Loopy belief propagation (LBP).

Approximation by Tractable Distributions

- Goal: probabilistic inference on joint distribution p(y) represented by *general* MRF (i.e. possibly with loops).
- Instead of tackling the inference on p directly, we first seek for an approximation q within a family Q consisting of "tractable" distributions:

$$q^* = \arg\min_{q \in \mathcal{Q}} \mathsf{KL}(q \mid p)$$
.

• The **Kullback-Leibler (KL) divergence** (a.k.a. *relative entropy*) between two distributions q, p (assuming p is a positive distribution) is defined by

$$\mathsf{KL}\left(q\,|\,p\right) = \sum_{y} q(y)\log\frac{q(y)}{p(y)}.$$

- Basic properties of KL:
 - 1. KL(q|p) = 0 iff p = q.
 - 2. $KL(q|p) \ge 0 \forall q, p$.
 - 3. $KL(\cdot | \cdot)$ is not symmetric. Nor does it satisfy the triangle inequality.

Preliminaries to Variational Inference

• Represented by a factor graph $\mathcal{G} = (\mathcal{V}, \mathcal{F}, \mathcal{E})$, p takes the form

$$p(y) = \exp\Big(-\sum_{F \in \mathcal{F}} E_F(y_F) - \log Z\Big).$$

Plug p into KL divergence →

$$\mathsf{KL}(q \mid p) = \sum_{y} q(y) \log \frac{q(y)}{p(y)} = \sum_{y} q(y) \log q(y) - \sum_{y} q(y) \log p(y)$$

$$= -H(q) + \sum_{F \in \mathcal{F}} \sum_{y_F} \mu_F[q](y_F) E_F(y_F) + \log Z.$$

- H(q) is the **entropy** of distribution q.
- $\mu_F[q]$ is the marginal distribution of q over variables Y_F .
- $F_{\text{Gibbs}}(q;p) := \text{KL}(q|p) \log Z = -H(q) + \sum_{F \in \mathcal{F}} \sum_{y_F} \mu_F[q](y_F) E_F(y_F)$ is called the **Gibbs free energy**.
- $\mathsf{KL}(q|p) \geq 0 \ \Rightarrow \ \mathsf{log}\, Z$ is lower bounded by $-F_{\mathsf{Gibbs}}(q;p)$.

Mean Field Approximation

In (naive) **mean field** method, Q consists of q factorized by only unaries:

Figure: (left) Original factor graph; (right) (Naive) mean field approximation.

• Such q is "tractable" because $\{q_i(y_i)\}$ provide variable marginals.

• Quick facts:
$$H(q) = \sum_{i \in \mathcal{V}} H(q_i) = -\sum_{i \in \mathcal{V}} \sum_{y_i} q_i(y_i) \log q_i(y_i),$$

$$\mu_F[q](y_F) = \prod_{i \in \mathsf{nbr}_\mathcal{G}(F)} q_i(y_i).$$

Mean Field (MF) Approximation

Derivation of MF approximation:

$$\begin{aligned} q^* &= \arg\min_{q \in \mathcal{Q}} \mathsf{KL}\left(q \,|\, p\right) = \arg\min_{q \in \mathcal{Q}} F(q; p) \\ &= \arg\min_{q \in \mathcal{Q}} - H(q) + \sum_{F \in \mathcal{F}} \sum_{y_F} \mu_F[q](y_F) E_F(y_F) \\ &= \arg\min_{\{q_i\}_{i \in \mathcal{V}}} \sum_{i \in \mathcal{V}} \sum_{y_i} q_i(y_i) \log q_i(y_i) + \sum_{F \in \mathcal{F}} \sum_{y_F} \left(\prod_{i \in \mathsf{nbr}_G(F)} q_i(y_i)\right) E_F(y_F). \end{aligned}$$

Each q_i lies in the probability simplex Δ_i , i.e.

$$q_i(y_i) \geq 0 \quad \forall y_i,$$

 $\sum_{y_i} q_i(y_i) = 1.$

The optimization can be resolved by *coordinate descent* (next slide).

MF Update Formula

For each block q_i , fix $\hat{q}_{i'}(y_{i'}) = q_{i'}(y_{i'}) \ \forall i' \neq i$ and solve:

$$q_i^* = \arg\min_{q_i \in \Delta_i} \sum_{y_i} q_i(y_i) \log q_i(y_i) + \sum_{F \in \mathsf{nbr}_{\mathcal{G}}(i)} \sum_{y_F} \bigg(\prod_{i' \in \mathsf{nbr}_{\mathcal{G}}(F) \setminus \{i\}} \widehat{q}_{i'}(y_{i'}) \bigg) q_i(y_i) E_F(y_F).$$

We obtain an analytical solution via Lagrange multiplier λ for $\sum_{v_i} q_i^*(y_i) = 1$:

$$egin{aligned} q_i^*(y_i) &= \expigg(-1 - \sum_{F \in \mathsf{nbr}_\mathcal{G}(i)} \sum_{\mathcal{Y}_{F \setminus \{i\}}} igg(\prod_{i' \in \mathsf{nbr}_\mathcal{G}(F) \setminus \{i\}} \widehat{q}_{i'}(y_{i'})igg) E_F(y_F) + \lambdaigg) \ &\propto \expigg(-\sum_{F \in \mathsf{nbr}_\mathcal{G}(i)} \sum_{\mathcal{Y}_{F \setminus \{i\}}} igg(\prod_{i' \in \mathsf{nbr}_\mathcal{G}(F) \setminus \{i\}} \widehat{q}_{i'}(y_{i'})igg) E_F(y_F)igg). \end{aligned}$$

Some Remarks on MF

- The term $\prod_{i' \in \mathsf{nbr}_{\mathcal{G}}(F) \setminus \{i\}} \widehat{q}_{i'}(y_{i'})$ is taken to be 1 if $\mathsf{nbr}_{\mathcal{G}}(F) \setminus \{i\} = \emptyset$.
- For a pairwise MRF \mathcal{H} , the MF update rule can be simplified as

$$q_i^*(y_i) \propto \expigg(-E_i(y_i) - \sum_{j \in \mathsf{nbr}_{\mathcal{H}}(i)} \sum_{y_j} \widehat{q}_j(y_j) E_{ij}(y_i, y_j)igg).$$

- MF is an iterative procedure which converges to a *locally optimal* solution q^* .
- Upon convergence, $\{q_i^*\}$ directly provide (approximate) variable marginals.
- The tractable family Q can be more sophisticated than factorizations of unaries in naive mean field. \rightsquigarrow *Structured mean field* approximation.

From Belief Propagation to Loopy Belief Propagation

- Previously we have seen how belief propagation works on tree factor graphs.
- We can use similar update rules to derive loopy belief propagation (LBP).
- Although LBP does not guarantee the convergence (if at all) to the true marginal, it often performs well and is widely used in practice³.
- In the following, we first present the LBP algorithm and then interpret it from perspective of variational inference.

Loopy Belief Propagation

On a factor graph $\mathcal{G} = (\mathcal{V}, \mathcal{F}, \mathcal{E})$, LBP proceeds as follows.

- 0. Initialize all variable-to-factor messages: $q_{i\to F}(y_i) = 0$. Then iterate:
- 1. Compute all factor-to-variable messages:

$$r_{F o i}(y_i) = \log \sum_{y_{F \setminus \{i\}}} \exp \Big(- E_F(y_F) + \sum_{i' \in \mathsf{nbr}_\mathcal{G}(F) \setminus \{i\}} q_{i' o F}(y_{i'}) \Big).$$

2. Compute all (normalized) variable-to-factor messages:

$$egin{aligned} ar{q}_{i
ightarrow F}(y_i) &= \sum_{F'\in \mathsf{nbr}_{\mathcal{G}}(i)\setminus\{F\}} r_{F'
ightarrow i}(y_i), \ \delta_{i
ightarrow F} &= \log\sum_{y_i} \exp\left(ar{q}_{i
ightarrow F}(y_i)
ight), \ q_{i
ightarrow F}(y_i) &= ar{q}_{i
ightarrow F}(y_i) - \delta_{i
ightarrow F}. \end{aligned}$$

Loopy Belief Propagation (cont'd)

3. Compute all factor marginals:

$$\mu_F(y_F) \propto \exp\Big(-E_F(y_F) + \sum_{i \in \mathsf{nbr}_\mathcal{G}(F)} q_{i \to F}(y_i)\Big).$$

4. Compute all variable marginals:

$$\mu_i(y_i) \propto \exp\Big(\sum_{F \in \mathsf{nbr}_\mathcal{G}(i)} r_{F \to i}(y_i)\Big).$$

Differences compared to BP:

- The normalization constants in the computation of marginals differ at each factor/variable.
- The log partition function is not directly available, but it can be approximated by the Bethe free energy:

$$\begin{aligned} -\log Z &\approx F_{\mathsf{Bethe}}(\mu; \pmb{p}) := \sum_{i \in \mathcal{V}} (1 - |\mathsf{nbr}_{\mathcal{G}}(i)|) \sum_{y_i} \mu_i(y_i) \log \mu_i(y_i) \\ &+ \sum_{F \in \mathcal{F}} \sum_{y_F} \mu_F(y_F) \Big(E_F(y_F) + \log \mu_F(y_F) \Big). \end{aligned}$$

Interpretation of LBP

On a pairwise MRF $\mathcal{H} = (\mathcal{V}, \mathcal{E})$, LBP can be interpreted as an attempt to solve:

$$\begin{split} & \underset{\{\mu_i\}_{i \in \mathcal{V}}, \, \{\mu_{ij}\}_{(i,j) \in \mathcal{E}}}{\text{minimize}} \sum_{i \in \mathcal{V}} (1 - |\operatorname{nbr}_{\mathcal{H}}(i)|) \sum_{y_i} \mu_i(y_i) \log \mu_i(y_i) \\ & + \sum_{(i,j) \in \mathcal{E}} \sum_{y_i, y_j} \mu_{ij}(y_i, y_j) \Big(E_{ij}(y_i, y_j) + \log \mu_{ij}(y_i, y_j) \Big) \\ & \text{subject to } \mu_i(y_i) \geq 0, \ \mu_{ij}(y_i, y_j) \geq 0, \ \sum_{y_i} \mu_i(y_i) = 1, \ \sum_{y_i} \mu_{ij}(y_i, y_j) = \mu_j(y_j). \end{split}$$

- The constraints impose *local consistency* between node marginals $\{\mu_i\}$ and edge marginals $\{\mu_{ij}\}$.
- However, $\{\mu_i\}$, $\{\mu_{ij}\}$ under these constraints are may not be marginals of any joint distribution on \mathcal{H} (i.e. outer approximation of *marginal polytope*).
- The solution for the optimization, if exists, has an analytical form (derived via Lagrangian multipliers), from which one can recover LBP updates.
- An amazing theory on variational inference arise in this context we point those interested to the "monster" paper [Jordan & Wainwright, 2008].

LBP vs. MF

- (+) (Naive) MF optimizes over only variable marginals; LBP optimizes over variable and factor marginals under local consistency constraints.
- (+) LBP does exact inference on factor graphs without loops; MF is exact on a strict subclass of factor graphs, on which all true factor marginals are factorized by $\mu_F(y_F) = \prod_{i \in \mathsf{nbr}_{\mathcal{G}}(F)} \mu_i(y_i)$ (hence an inner approximation of marginal polytope).
- (+) While both being approximate inference techniques, LBP tends to be more accurate than MF in practice.
- (-) MF provides a lower bound of the log partition function (given by negative Gibbs free energy), while LBP does not.
- (-) Compared to LBP, it is easier to extend MF to distributions other than discrete and Gaussian, due to the simplicity of working with only variable marginals.

Further Reading

- Murphy, Chapters 21, 22.
- Nowozin & Lampert, Sections 3.2, 3.3.
- Jordan & Wainwright, Chapters 4, 5.
- Koller & Friedman, Chapter 11.