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Motivation
– Many computer vision tasks boil down to inference on graphical models.
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Stereo matching

Inpainting Super-resolution

1. Probabilistic inference: compute marginal distribution

p(y) =
∑

x

p(y , x).

2. MAP inference: compute maximum of conditional distribution

arg max
y

p(y |x).
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Exact Inference
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Outline of the Section

• Basic idea: Variable elimination.

• Junction tree algorithm on arbitrary MRFs.

• Belief propagation on tree factor graphs.
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Example: Marginal Query on a "Chain" MRF

Joint distribution represented by MRF:

p(y1, y2, y3, y4) =
1
Z
φ1(y1) · φ12(y1, y2) · φ23(y2, y3) · φ34(y3, y4) · φ4(y4).

Query about marginal distribution p(y2) = ?
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Variable Elimination
Apply variable elimination (VE) to the marginal query:

p(y2) =
∑

y1,y3,y4

p(y1, y2, y3, y4)

=
∑

y1,y3,y4

1
Z
φ1(y1)φ12(y1, y2)φ23(y2, y3)φ34(y3, y4)φ4(y4)

=
1
Z

∑

y1

(
φ1(y1)φ12(y1, y2)

)

︸ ︷︷ ︸
=: m1→2(y2)

∑

y3

(
φ23(y2, y3)

∑

y4

(
φ34(y3, y4)φ4(y4)

)

︸ ︷︷ ︸
=: m4→3(y3)

)

=
1
Z

m1→2(y2)
∑

y3

(
φ23(y2, y3)m4→3(y3)

)

︸ ︷︷ ︸
=: m3→2(y2)

=
1
Z

m1→2(y2)m3→2(y2),

Z =
∑

y2

m1→2(y2)m3→2(y2).
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Variable Elimination and Beyond

y1 y2 y3 y4
F12 F23 F34 F4F1

• This algorithm is called sum-product VE.

• Sum-product VE yields exact inference (of one node marginal) on any
tree-structured factor graph.

• Observed nodes (a.k.a. evidence) can be introduced as reduced factors.

• A similar algorithm can be derived for MAP inference – simply switch all
"sum" to "max". The resulting algorithm is called max-product VE.

• We shall consider two different extensions beyond VE:

1. Inference on arbitrary MRFs?  Junction tree algorithm.

2. Compute all node/factor marginals at one shot?  Belief propagation.
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Junction Tree
• For an undirected graph H = (V , E), the junction tree of H is a tree T s.t.

1. The nodes of T consist of the maximal cliques of H.

2. The edge Sij between two nodes Ci ,Cj of T (i.e. two maximal cliques of
H) is given by Sij = Ci ∩ Cj (known as the running intersection property).

• H is triangulated if every cycle of length ≥ 4 has a chord. (A chord is an
edge that is not part of the cycle but connects two vertices of the cycle.)

• Theorem [Lauritzen ’96]: A graph has a junction tree iff it is triangulated.

Figure:1 (a) Original graph; (b) Triangulation of (a); (c) Junction tree for (b).
1Wainwright and Jordan, “Graphical Models, Exponential Families, and Variational Inference”.
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Junction Tree Algorithm (Sketch)

Sum-product message passing on a junction tree T appears like:

mCi→Cj (yCj∩Ci ) =
∑

yCi\Cj

φCi (yCi )
∏

Ck∈nbrT (Ci)\{Cj}
mCk→Ci (yCi∩Ck ).

Overall junction tree algorithm for exact inference on an arbitrary MRF:

1. Given a MRF with cycles, triangulate it by adding edges as necessary.

2. Form a junction tree T for the triangulated MRF.

3. Run VE on the junction tree T .
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Belief Propagation on Tree Factor Graphs2

• Factor graph G = (V ,F , E): assumed to be a tree.

• Neighbors of a variable or factor node:

nbrG(i) = {F ∈ F : (i,F ) ∈ E},
nbrG(F ) = {i ∈ V : (i,F ) ∈ E}.

• (Log-domain) energies: EF (yF ) = − logφF (yF ).
2Illustrations for BP are extracted from Nowozin & Lampert, 2011.

PGM SS19 : III : Inference on Graphical Models 10

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich



BP: Leaf-to-Root Stage

0. Pick Yr ∈ V as the tree root (e.g. Ym in the figure).

1a. Schedule the leaf-to-root messages.

Figure: Belief propagation: leaf-to-root stage.

1b. Compute all leaf-to-root messages (detailed in the next slide).
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BP: Compute Messages
• Compute variable-to-factor message:

qi→F (yi) =
∑

F ′∈nbrG(i)\{F}
rF ′→i(yi).

• Compute factor-to-variable message:

rF→i(yi) = log
∑

yF\{i}

exp
(
− EF (yF ) +

∑

i ′∈nbrG(F )\{i}
qi ′→F (yi ′)

)
.
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BP: Compute the Partition Function

Figure: Belief propagation: leaf-to-root stage.

1c. Compute the log partition function:

log Z = log
∑

yr

exp
( ∑

F∈nbrG(r)

rF→r(yr)
)
.
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BP: Root-to-Leaf Stage

2a. Schedule the root-to-leaf messages.

Figure: Belief propagation: root-to-leaf stage.

2b. Compute the root-to-leaf messages using the same formulas on page 12.
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BP: Compute Factor / Variable Marginals
2c. Alongside Step 2b, combine messages and compute factor marginals:

µF (yF ) := p(yF ) = exp
(
− EF (yF ) +

∑

i∈nbrG(F )

qi→F (yi)− log Z
)
,

as well as variable marginals:

µi(yi) := p(yi) = exp
( ∑

F∈nbrG(i)

rF→i(yi)− log Z
)
.

Figure: (left) Factor marginal; (right) Variable marginal.
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BP on Pairwise MRFs (as exercise)

For a pairwise MRF H = (V , E), the joint distribution is factorized by

p(y) = exp
(
−
∑

i∈V
Ei(yi)−

∑

(i,j)∈E
Eij(yi , yj)− log Z

)
.

BP on such pairwise MRF can be simplified:

• Variable-to-variable message is computed by

mi→j(yj) = log
∑

yi

exp
(
− Ei(yi)− Eij(yi , yj) +

∑

k∈nbrH(i)\{j}
mk→i(yi)

)
.

• Variable marginal is computed by

µi(yi) = exp
(
− Ei(yi) +

∑

k∈nbrH(i)

mk→i(yi)− log Z
)
.
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Further Reading

• Koller & Friedman, Chapters 9, 10.

• Murphy, Chapter 20.

• Nowozin & Lampert, Section 3.1.
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Variational Inference
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Outline of this Section

• Basic idea: Variational inference.

• Mean field (MF) method.

• Loopy belief propagation (LBP).
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Approximation by Tractable Distributions
• Goal: probabilistic inference on joint distribution p(y) represented by general

MRF (i.e. possibly with loops).

• Instead of tackling the inference on p directly, we first seek for an
approximation q within a family Q consisting of "tractable" distributions:

q∗ = arg min
q∈Q

KL (q | p) .

• The Kullback-Leibler (KL) divergence (a.k.a. relative entropy) between two
distributions q, p (assuming the "absolute continuity" q � p) is defined by

KL (q | p) =
∑

y

q(y) log
q(y)

p(y)
.

• Basic properties of KL:
1. KL (q | p) = 0 iff p = q.
2. KL (q | p) ≥ 0 ∀q, p.
3. KL (· | ·) is not symmetric. Nor does it satisfy the triangle inequality.
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Preliminaries to Variational Inference
• Represented by a factor graph G = (V ,F , E), p takes the form

p(y) = exp
(
−
∑

F∈F
EF (yF )− log Z

)
.

• Plug p into KL divergence 

KL (q | p) =
∑

y

q(y) log
q(y)

p(y)
=
∑

y

q(y) log q(y) −
∑

y

q(y) log p(y)

= −H(q) +
∑

F∈F

∑

yF

µF [q](yF )EF (yF ) + log Z .

• H(q) is the entropy of distribution q.

• µF [q] is the marginal distribution of q over variables YF .

• FGibbs(q; p) := KL (q | p)− log Z = −H(q) +
∑

F∈F
∑

yF
µF [q](yF )EF (yF ) is

called the Gibbs free energy.

• KL (q | p) ≥ 0 ⇒ log Z is lower bounded by −FGibbs(q; p).
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Mean Field Approximation
In (naive) mean field method, Q consists of q factorized by only unaries:

q(y) =
∏

i∈V
qi(yi).

Figure: (left) Original factor graph; (right) (Naive) mean field approximation.

• Such q is "tractable" because {qi(yi)} provide variable marginals.

• Quick facts: H(q) =
∑

i∈V
H(qi) = −

∑

i∈V

∑

yi

qi(yi) log qi(yi),

µF [q](yF ) =
∏

i∈nbrG(F )

qi(yi).
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Mean Field (MF) Approximation

Derivation of MF approximation:

q∗ = arg min
q∈Q

KL (q | p) = arg min
q∈Q

F (q; p)

= arg min
q∈Q
−H(q) +

∑

F∈F

∑

yF

µF [q](yF )EF (yF )

= arg min
{qi}i∈V

∑

i∈V

∑

yi

qi(yi) log qi(yi) +
∑

F∈F

∑

yF

( ∏

i∈nbrG(F )

qi(yi)

)
EF (yF ).

Each qi lies in the probability simplex ∆i , i.e.

qi(yi) ≥ 0 ∀yi ,∑

yi

qi(yi) = 1.

The optimization can be resolved by coordinate descent (next slide).
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MF Update Formula
For each block qi , fix q̂i ′(yi ′) = qi ′(yi ′) ∀i ′ 6= i and solve:

q∗i = arg min
qi∈∆i

∑

yi

qi(yi) log qi(yi) +
∑

F∈nbrG(i)

∑

yF

( ∏

i ′∈nbrG(F )\{i}
q̂i ′(yi ′)

)
qi(yi)EF (yF ).

We obtain an analytical solution via Lagrange multiplier λ for
∑

yi
q∗i (yi) = 1:

q∗i (yi) = exp
(
− 1−

∑

F∈nbrG(i)

∑

yF\{i}

( ∏

i ′∈nbrG(F )\{i}
q̂i ′(yi ′)

)
EF (yF ) + λ

)

∝ exp
(
−

∑

F∈nbrG(i)

∑

yF\{i}

( ∏

i ′∈nbrG(F )\{i}
q̂i ′(yi ′)

)
EF (yF )

)
.
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Some Remarks on MF

• The term
∏

i ′∈nbrG(F )\{i} q̂i ′(yi ′) is taken to be 1 if nbrG(F )\{i} = ∅.

• For a pairwise MRF H, the MF update rule can be simplified as

q∗i (yi) ∝ exp
(
− Ei(yi)−

∑

j∈nbrH(i)

∑

yj

q̂j(yj)Eij(yi , yj)

)
.

• MF is an iterative procedure which converges to a locally optimal solution q∗.

• Upon convergence, {q∗i } directly provide (approximate) variable marginals.

• The tractable family Q can be more sophisticated than factorizations of
unaries in naive mean field.  Structured mean field approximation.
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From Belief Propagation to Loopy Belief Propagation

• Previously we have seen how belief propagation works on tree factor graphs.

• We can use similar update rules to derive loopy belief propagation (LBP).

• Although LBP does not guarantee the convergence (if at all) to the true
marginal, it often performs well and is widely used in practice3.

• In the following, we first present the LBP algorithm and then interpret it from
perspective of variational inference.

3Murphy et al., “Loopy Belief Propagation for Approximate Inference: An Empirical Study”.
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Loopy Belief Propagation
On a factor graph G = (V ,F , E), LBP proceeds as follows.

0. Initialize all variable-to-factor messages: qi→F (yi) = 0. Then iterate:

1. Compute all factor-to-variable messages:

rF→i(yi) = log
∑

yF\{i}

exp
(
− EF (yF ) +

∑

i ′∈nbrG(F )\{i}
qi ′→F (yi ′)

)
.

2. Compute all (normalized) variable-to-factor messages:

q̄i→F (yi) =
∑

F ′∈nbrG(i)\{F}
rF ′→i(yi),

δi→F = log
∑

yi

exp
(

q̄i→F (yi)
)
,

qi→F (yi) = q̄i→F (yi)− δi→F .
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Loopy Belief Propagation (cont’d)
3. Compute all factor marginals:

µF (yF ) ∝ exp
(
− EF (yF ) +

∑

i∈nbrG(F )

qi→F (yi)
)
.

4. Compute all variable marginals:

µi(yi) ∝ exp
( ∑

F∈nbrG(i)

rF→i(yi)
)
.

Differences compared to BP:

• The normalization constants in the computation of marginals differ at each
factor/variable.

• The log partition function is not directly available, but it can be approximated
by the Bethe free energy:

− log Z ≈ FBethe(µ; p) :=
∑

i∈V
(1− | nbrG(i)|)

∑

yi

µi(yi) logµi(yi)

+
∑

F∈F

∑

yF

µF (yF )
(

EF (yF ) + logµF (yF )
)
.
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Interpretation of LBP
On a pairwise MRF H = (V , E), LBP can be interpreted as an attempt to solve:

minimize
{µi}i∈V , {µij}(i,j)∈E

∑

i∈V
(1− | nbrH(i)|)

∑

yi

µi(yi) logµi(yi)

+
∑

(i,j)∈E

∑

yi ,yj

µij(yi , yj)
(

Eij(yi , yj) + logµij(yi , yj)
)

subject to µi(yi) ≥ 0, µij(yi , yj) ≥ 0,
∑

yi

µi(yi) = 1,
∑

yi

µij(yi , yj) = µj(yj).

• The constraints impose local consistency between node marginals {µi} and
edge marginals {µij}.

• However, {µi}, {µij} under these constraints are may not be marginals of
any joint distribution on H (i.e. outer approximation of marginal polytope).

• LBP updates can be derived from an iterative algorithm for the above
constrained optimization.

• An amazing theory on variational inference arise in this context — we point
those interested to the "monster" paper [Jordan & Wainwright, 2008].
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LBP vs. MF
(+) (Naive) MF optimizes over only variable marginals; LBP optimizes over

variable and factor marginals under local consistency constraints.

(+) LBP does exact inference on factor graphs without loops; MF is exact on a
strict subclass of factor graphs, on which all true factor marginals are
factorized by µF (yF ) =

∏
i∈nbrG(F ) µi(yi) (hence an inner approximation of

marginal polytope).

(+) While both being approximate inference techniques, LBP tends to be more
accurate than MF in practice.

(−) MF provides a lower bound of the log partition function (given by negative
Gibbs free energy), while LBP does not.

(−) Compared to LBP, it is easier to extend MF to distributions other than
discrete and Gaussian, due to the simplicity of working with only variable
marginals.
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Further Reading

• Murphy, Chapters 21, 22.

• Nowozin & Lampert, Sections 3.2, 3.3.

• Koller & Friedman, Chapter 11.

• Jordan & Wainwright, Chapters 4, 5.
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Sampling-based Inference
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Outline of the Section

• Monte Carlo (MC) method.

• Markov chain Monte Carlo (MCMC) method.

• Sampling of Bayesian network and Markov random field.
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Basic Principle of Sampling
Given a distribution p, we can approximate p using a finite sequence of samples
{xn}N

n=1 in the sense that:

Ex∼p[f (x)] =
∑

x

f (x)p(x) ≈ 1
N

N∑

n=1

f (xn) for any function f .

Figure: Sampling of a Gaussian4.

4https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html
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Pseudo-Random Number Generator
Linear congruential generator for sampling Unif(0, 1):

xn+1 = (a · xn + c) mod m.

• Most fundamental sampler above all.
• The generated samples are pseudo-random — {xn} are "deterministic" if

the generator (i.e. parameters a, c,m) and the seed x0 are fixed.

Figure: Common used linear congruential generators5.
5https://en.wikipedia.org/wiki/Linear_congruential_generator
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Sampling Gaussians
• Sample univariate Gaussian distribution by Box-Muller method:
1. Sample (z1, z2) ∼ pz(z1, z2) = 1

π1{z2
1 + z2

2 ≤ 1} (i.e. uniform distribution
supported on the unit 2D circle).

2. Perform the Box-Muller transformation and output x1, x2:

xi = zi

√
−2 log(z2

1 + z2
2)

z2
1 + z2

2
, i ∈ {1, 2}.

Fact: x1, x2 are two independent samples of Normal(0, 1):

px(x1, x2) = pz(z1, z2)

∣∣∣∣
∂(z1, z2)

∂(x1, x2)

∣∣∣∣ =
1√
2π

exp(−x2
1/2) · 1√

2π
exp(−x2

2/2).

• Sample multivariate Gaussian distribution, y ∼ Normal(µ,Σ), by:
1. Perform Cholesky decomposition Σ = LL>.
2. Sample x ∼ Normal(0, I), and output y := Lx + µ.

Fact: E[y ] = µ, and Var[y ] = L Var[x ]L> = LIL> = Σ.
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Sampling by Inverse CDF
Sample a distribution via inverse Cumulative Distribution Function:

• Let U ∼ Unif(0, 1) and Fp be the CDF for (univariate) distribution p, i.e.

Fp(y) :=

∫ y

−∞
p(x)dx =

∫ ∞

−∞
1{x ≤ y}p(x)dx .

• Note that X ∼ p ⇔ P(X ≤ y) = Fp(y).

• We assert F−1
p (U) ∼ p, since

P(F−1
p (U) ≤ y) = P(U ≤ Fp(y)) (since Fp is monotone)

= Fp(y). (since P(U ≤ u) = u ∀u ∈ [0, 1])

Figure: Sampling using inverse CDF [Murphy, Figure 23.1].
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Rejection Sampling
• Inverse CDF sampling requires explicit knowledge of F−1

p .

• Rejection Sampling:
Require: unnormalized target distribution p̃ (i.e. p̃(x)/Zp = p(x) for target
distribution p), proposal distribution q and constant M > 0
s.t. Mq(x) ≥ p̃(x) ∀x (⇒ p � q).

1. Sample x ∼ q, and u ∼ Unif(0, 1).
2. If u > p̃(x)

Mq(x), reject the proposed sample x ; otherwise, accept x .
818 Chapter 23. Monte Carlo inference

x

uMq(x  )

Accept region Reject region

x  ~ q(x)(i)

(i)

(i)

(i)

p(x  )

Mq(x  )

(a)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

target p(x)

comparison function Mq(x)

(b)

Figure 23.2 (a) Schematic illustration of rejection sampling. Source: Figure 2 of (Andrieu et al. 2003).
Used with kind permission of Nando de Freitas. (b) Rejection sampling from a Ga(α = 5.7, λ = 2)
distribution (solid blue) using a proposal of the form MGa(k, λ − 1) (dotted red), where k = ⌊5.7⌋ = 5.
The curves touch at α − k = 0.7. Figure generated by rejectionSamplingDemo.

Then the cdf of the accepted points is given by

P (x ≤ x0 |x accepted) =
P (x ≤ x0 , x accepted)

P (x accepted)
(23.10)

=

∫ ∫
I((x, u) ∈ S0 )q(x)dudx∫ ∫
I((x, u) ∈ S)q(x)dudx

=

∫ x0

−∞ p̃(x)dx
∫∞
−∞ p̃(x)dx

(23.11)

which is the cdf of p(x), as desired.
How efficient is this method? Since we generate with probability q(x) and accept with

probability p̃(x)
Mq(x) , the probability of acceptance is

p(accept) =

∫
p̃(x)

Mq(x)
q(x)dx =

1

M

∫
p̃(x)dx (23.12)

Hence we want to choose M as small as possible while still satisfying Mq(x) ≥ p̃(x).

23.3.2 Example

For example, suppose we want to sample from a Gamma distribution:1

Ga(x|α, λ) =
1

Γ(α)
xα−1λα exp(−λx) (23.13)

One can show that if Xi
iid∼ Expon(λ), and Y = X1 + · · · + Xk , then Y ∼ Ga(k, λ). For

non-integer shape parameters, we cannot use this trick. However, we can use rejection sampling

1. This section is based on notes by Ioana A. Cosma, available at http://users.aims.ac.za/~ioana/cp2.pdf.

Figure: Rejection sampling [Murphy, Figure 23.2].

• Proof: (univariate case) P(x ≤ y |x accepted) = P(x≤y , x accepted)
P(x accepted) =

∫∫
1{u≤p̃(x)/(Mq(x)), x≤y}q(x)du dx∫∫

1{u≤p̃(x)/(Mq(x))}q(x)du dx =
1
M

∫ y
−∞ p̃(x)dx

1
M

∫∞
−∞ p̃(x)dx

= Fp(y).
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Importance Sampling
• In rejection sampling, P(x accepted) = 1

M

∫∞
−∞ p̃(x)dx , i.e., many proposed

samples are potentially wasted.

• In contrast, importance sampling uses all samples by weighting them:

Ex∼p[f (x)] =

∫
f (x)

p(x)

q(x)
q(x)dx ≈ 1

N

N∑

n=1

wnf (xn),

with xn ∼ q i.i.d. and wn = p(xn)
q(xn).

• Extend importance sampling to unnormalized distributions p̃, q̃:

Ex∼p[f (x)] =
Zq

Zp

∫
f (x)

p̃(x)

q̃(x)
q(x)dx ≈ Zq

Zp

1
N

N∑

n=1

p̃(xn)

q̃(xn)
f (xn), xn ∼ q i.i.d.

Zp

Zq
=

∫
1
Zq

p̃(x)dx =

∫
p̃(x)

q̃(x)
q(x)dx ≈ 1

N

N∑

n=1

p̃(x ′n)

q̃(x ′n)
, x ′n ∼ q i.i.d.

We often take x ′n = xn. For finite N, this yields a biased estimator of p.
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Sampling of Bayesian Network
Recall that the distribution represented by BN is given by

p(x) =
∏

i∈V
p(xi|(xj)j∈PaG(i)).

Ancestral sampling: Given that no variables are observed, we can follow the
topological order of the BN and sample each individual conditional distribution.
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Sampling of BN with Evidence
In case the BN G contains observed nodes (called evidence), we can modify
ancestral sampling (AS) as follows:

• Logic sampling: Perform AS. Whenever a sampled node takes different
value from the evidence, reject the whole sample and start again.

• LS is closely related to rejection sampling. Unsurprisingly, it is inefficient for
wasting samples.

• Likelihood weighting: Perform AS. Whenever node i is observed (written
i ∈ O), we clamp the observed value x̄i and weight the whole sample by the
probability of the clamped node p(x̄i|xPaG(i)).

• LW can be interpreted as importance sampling with weights given by:

w(x) =
p(x)

q(x)
=

∏
i∈V p(xi|xPaG(i))∏

i∈V\O p(xi|xPaG(i))
∏

i∈O δx̄i (xi)
=
∏

i∈O
p(x̄i|xPaG(i)).

δx̄ denotes the Dirac distribution defined by δx̄(x) =

{
1 if x = x̄ ,
0 otherwise.

PGM SS19 : III : Inference on Graphical Models 41

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich



Towards Markov Chain Monte Carlo
• Monte Carlo sampling requires exact or rough knowledge of the partition

function (of a MRF), hence impractical for high dimensional distributions.

• Instead of generating i.i.d. samples, Monte Carlo Markov Chain (MCMC)
constructs a Markov chain using "adaptive" proposal distributions, in a way
that the Markov chain converges to a stationary distribution identical to the
target distribution.

Figure: Sampling by MCMC [Murphy, Figure 24.7].
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Markov Chain
• The (discrete-time) Markov chain (MC) is a sequence of RVs (Xn)∞n=1

satisfying the Markov property:

P(Xn+1 = x |X1, ...,Xn given) = P(Xn+1 = x |Xn given).

"The future depends on the past only through the present."

• Further assume:
1. All Xn has a finite state space X .
2. The MC is time-homogeneous, i.e., the transition probability is

time-independent

P(Xn+1 = x ′|Xn = x) =: π(x ′|x) ∀n,
with π(x ′|x) ≥ 0,

∑
x ′ π(x ′|x) = 1. π is the transition kernel of the MC.

• Denote by pn the distribution at time step n:

pn(x) = P(Xn = x) ⇒ pn+1(x ′) =
∑

x

pn(x)π(x ′|x).
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Relevant Notions on Markov Chain
• p∗ is a stationary distribution for the MC if

p∗(x ′) =
∑

x

p∗(x)π(x ′|x) ∀x ′ ∈ X .

• The MC is irreducible if

∀x , x ′ ∈ X ∃n(x , x ′) s.t. P(Xn = x ′|X0 = x) > 0,

i.e., it is possible to get to any state from any state in finite steps.

• A state x ∈ X has period Tx if

Tx = gcd{n > 0 : P(Xn = x |X0 = x) > 0},
i.e., any loop over state x must occur in a multiple of Tx steps.
We say the MC is aperiodic if Tx = 1 ∀x ∈ X .

• The MC is regular if

∃n s.t. P(Xn = x ′|X0 = x) > 0 ∀x , x ′ ∈ X .
Fact: MC is regular⇒ MC is irreducible and aperiodic.
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Convergence to Stationary Distribution

Theorem 1: If the transition kernel π of a Markov chain satisfies the detailed
balance condition for some distribution p∗:

p∗(x)π(x ′|x) = p∗(x ′)π(x |x ′) ∀x , x ′ ∈ X ,
then p∗ is a stationary distribution for the Markov chain.

Proof:
∑

x p∗(x)π(x ′|x) =
∑

x p∗(x ′)π(x |x ′) = p∗(x ′)
∑

x π(x |x ′) = p∗(x ′).

Theorem 26: Every irreducible, aperiodic, finite-state Markov chain has a limiting
distribution

p∗(x ′) = lim
n→∞

∑

x

P(Xn = x ′|X0 = x)p0(x),

regardless of the initial distribution p0. Indeed, p∗ is equal to the unique
stationary distribution of the MC.

6[Murphy, Theorem 17.2.1]
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Metropolis-Hastings Algorithm
Metropolis-Hastings (MH) algorithm:

Input: unnormalized target distribution p̃ (i.e. p∗(x) = p̃(x)/Zp), proposal
distribution q(·|·), initial sample x0. Loop n = 0, 1, 2, ... as follows:

1. Set x = xn. Sample x ′ ∼ q(x ′|x).

2. Compute acceptance probability α =
p̃(x ′)q(x |x ′)
p̃(x)q(x ′|x)

.

3. Compute r = min(1, α). Sample u ∼ Unif(0, 1).

4. Set new sample to: xn+1 =

{
x ′ if u < r ,
xn if u ≥ r .

Some remarks:
• For a given target distribution p∗, a proposal distribution q is valid if

supp(p∗) ⊂ ∪x supp(q(·|x)), i.e. ∀x ′ with p∗(x ′) > 0 ∃x s.t. q(x ′|x) > 0.

• If q is symmetric, i.e. q(x ′|x) = q(x |x ′), then MH simplifies to the Metropolis
algorithm with α = p̃(x ′)

p̃(x)
. Hastings made the correction for asymmetric q.
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Analysis of MH Algorithm
We analyze with convergence of the MH algorithm:

1. MH generates a Markov chain with the transition kernel:

π(x ′|x) =

{
q(x ′|x)r(x ′|x) if x ′ 6= x ,
q(x |x) +

∑
x ′ 6=x q(x ′|x)(1− r(x ′|x)) if x ′ = x .

r(x ′|x) is the conditional probability that x ′ is accepted after being proposed.
We will show that the Markov chain satisfies the detailed balance condition:

p∗(x)π(x ′|x) = p∗(x ′)π(x |x ′).

2. Let two states x and x ′ (x 6= x ′) be arbitrarily fixed. Either

p∗(x)π(x ′|x) ≤ p∗(x ′)π(x |x ′), (†)
or the reversed inequality holds. Without loss of generality, we proceed with
inequality (†).
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Analysis of MH Algorithm (cont’d)
p∗(x)π(x ′|x) ≤ p∗(x ′)π(x |x ′). (†)

3. (†) ⇒ α(x ′|x) =
p∗(x ′)q(x |x ′)
p∗(x)q(x ′|x)

≤ 1 ⇒ r(x ′|x) = α(x ′|x)

⇒ π(x ′|x) = q(x ′|x)r(x ′|x) = q(x ′|x)
p∗(x ′)q(x |x ′)
p∗(x)q(x ′|x)

=
p∗(x ′)
p∗(x)

q(x |x ′).

4. (†) ⇒ α(x |x ′) =
p∗(x)q(x ′|x)

p∗(x ′)q(x |x ′) ≥ 1 ⇒ r(x |x ′) = 1

⇒ π(x |x ′) = q(x |x ′)r(x |x ′) = q(x |x ′).
5. Combining (3) and (4), we conclude that p∗(x)π(x ′|x) = p∗(x ′)π(x |x ′).

Hence, by Theorem 1, p∗ is a stationary distribution for the Markov chain.

6. If in addition the Markov chain generated by the MH algorithm is irreducible
and aperiodic, then by Theorem 2 the Markov chain converges to the unique
stationary distribution p∗.
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Gibbs Sampling
Gibbs sampling:

Input: unnormalized target distribution p̃((xi)i∈V), initial sample x0.
Loop n ∈ {0, 1, 2, ...}, i ∈ V :

Sample xn+1
i ∼ p(xi|xn+1

{0,...,i−1}, x
n
{i+1,...,|V|}).

Some remarks:

• If p is represented by a graphical model (i.e. BN or MRF), then sampling of
xn+1

i only involves the Markov blanket of i .

• Gibbs sampling can be interpreted as the MH algorithm with the proposal:

q(x ′|x) = δxV\{i}(x
′
V\{i})p(x ′i |xV\{i}),

and 100% acceptance rate:

α =
p(x ′)q(x |x ′)
p(x)q(x ′|x)

=
p(x ′i |x ′V\{i})p(x ′V\{i})δxV\{i}(x

′
V\{i})p(xi|x ′V\{i})

p(xi|xV\{i})p(xV\{i})p(x ′i |xV\{i})
= 1.
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Example: Gibbs Sampling for Pairwise CRF

Figure: Gibbs Sampling for Pairwise CRF7.

We can apply Gibbs sampling to find

y ∼ p(y |x) ∝ exp
(
−
∑

i∈V
Ei(yi ; xi)−

∑

(i,j)∈E
Eij(yi , yj)

)
.

For each i ∈ V , sample (e.g. by inverse CDF method):

yn+1
i ∼ p(yi|xi , yn

nbr(i)) ∝ exp
(
− Ei(yi)−

∑

j∈nbr(i)

Eij(yi , yn
j )
)
.

7Sampled images taken from [Murphy, Figure 24.1].
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Further Reading

• Murphy, Chapters 23, 24.

• Nowozin & Lampert, Sections 3.4.

• Koller & Friedman, Chapter 12.
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