

III: Inference on Graphical Models

Tao Wu, Yuesong Shen, Zhenzhang Ye

Computer Vision & Artificial Intelligence Technical University of Munich

Motivation

Many computer vision tasks boil down to inference on graphical models.

Denoising

Optical flow

Stereo matching

Inpainting

Super-resolution

1. Probabilistic inference: compute marginal distribution

$$p(y) = \sum_{x} p(y, x).$$

2. MAP inference: compute maximum of conditional distribution

$$arg \max_{y} p(y|x).$$

Exact Inference

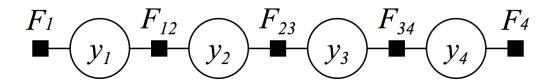
Outline of the Section

- Basic idea: Variable elimination.
- Junction tree algorithm on arbitrary MRFs.
- Belief propagation on tree factor graphs.

Example: Marginal Query on a "Chain" MRF

Joint distribution represented by MRF:

$$p(y_1, y_2, y_3, y_4) = \frac{1}{Z} \phi_1(y_1) \cdot \phi_{12}(y_1, y_2) \cdot \phi_{23}(y_2, y_3) \cdot \phi_{34}(y_3, y_4) \cdot \phi_4(y_4).$$



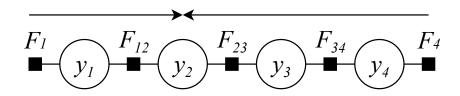
Query about marginal distribution $p(y_2) = ?$

Variable Elimination

Apply variable elimination (VE) to the marginal query:

$$\begin{split} \rho(y_2) &= \sum_{y_1, y_3, y_4} \rho(y_1, y_2, y_3, y_4) \\ &= \sum_{y_1, y_3, y_4} \frac{1}{Z} \phi_1(y_1) \phi_{12}(y_1, y_2) \phi_{23}(y_2, y_3) \phi_{34}(y_3, y_4) \phi_4(y_4) \\ &= \frac{1}{Z} \sum_{\underbrace{y_1}} \left(\phi_1(y_1) \phi_{12}(y_1, y_2) \right) \sum_{y_3} \left(\phi_{23}(y_2, y_3) \sum_{\underbrace{y_4}} \left(\phi_{34}(y_3, y_4) \phi_4(y_4) \right) \right) \\ &= : m_{1 \to 2}(y_2) \\ &= : m_{1 \to 2}(y_2) \sum_{\underbrace{y_3}} \left(\phi_{23}(y_2, y_3) m_{4 \to 3}(y_3) \right) \\ &= : m_{3 \to 2}(y_2) \\ &= \frac{1}{Z} m_{1 \to 2}(y_2) m_{3 \to 2}(y_2), \\ Z &= \sum m_{1 \to 2}(y_2) m_{3 \to 2}(y_2). \end{split}$$

Variable Elimination and Beyond



- This algorithm is called sum-product VE.
- Sum-product VE yields *exact* inference (of one node marginal) on any *tree-structured factor graph*.
- Observed nodes (a.k.a. evidence) can be introduced as reduced factors.
- A similar algorithm can be derived for MAP inference simply switch all "sum" to "max". The resulting algorithm is called max-product VE.
- We shall consider two different extensions beyond VE:
 - 1. Inference on arbitrary MRFs? → Junction tree algorithm.
 - 2. Compute all node/factor marginals at one shot? → Belief propagation.

Junction Tree

- For an undirected graph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$, the **junction tree** of \mathcal{H} is a tree \mathcal{T} s.t.
 - 1. The nodes of \mathcal{T} consist of the *maximal cliques* of \mathcal{H} .
 - 2. The edge S_{ij} between two nodes C_i , C_j of \mathcal{T} (i.e. two maximal cliques of \mathcal{H}) is given by $S_{ij} = C_i \cap C_j$ (known as the *running intersection property*).
- \mathcal{H} is **triangulated** if every cycle of length \geq 4 has a *chord*. (A chord is an edge that is not part of the cycle but connects two vertices of the cycle.)
- Theorem [Lauritzen '96]: A graph has a junction tree iff it is triangulated.

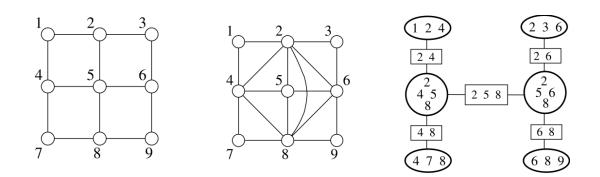
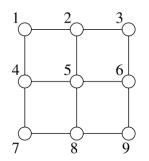
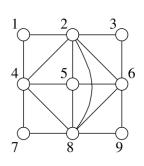


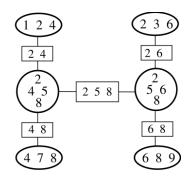
Figure: (a) Original graph; (b) Triangulation of (a); (c) Junction tree for (b).

¹Wainwright and Jordan, "Graphical Models, Exponential Families, and Variational Inference". PGM SS19: III: Inference on Graphical Models

Junction Tree Algorithm (Sketch)







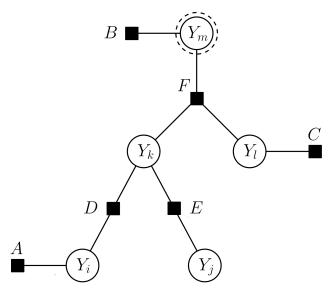
Sum-product message passing on a junction tree \mathcal{T} appears like:

$$m_{C_i o C_j}(y_{C_j \cap C_i}) = \sum_{y_{C_i \setminus C_i}} \phi_{C_i}(y_{C_i}) \prod_{C_k \in \mathsf{nbr}_{\mathcal{T}}(C_i) \setminus \{C_j\}} m_{C_k o C_i}(y_{C_i \cap C_k}).$$

Overall junction tree algorithm for exact inference on an arbitrary MRF:

- 1. Given an MRF with cycles, triangulate it by adding edges as necessary.
- 2. Form a junction tree \mathcal{T} for the triangulated MRF.
- 3. Run VE on the junction tree \mathcal{T} .

Belief Propagation on Tree Factor Graphs²



- Factor graph $\mathcal{G} = (\mathcal{V}, \mathcal{F}, \mathcal{E})$: assumed to be a tree.
- Neighbors of a variable or factor node:

$$\mathsf{nbr}_{\mathcal{G}}(i) = \{ F \in \mathcal{F} : (i, F) \in \mathcal{E} \}, \\ \mathsf{nbr}_{\mathcal{G}}(F) = \{ i \in \mathcal{V} : (i, F) \in \mathcal{E} \}.$$

• (Log-domain) energies: $E_F(y_F) = -\log \phi_F(y_F)$.

²Illustrations for BP are extracted from Nowozin & Lampert, 2011. PGM SS19: III: Inference on Graphical Models

BP: Leaf-to-Root Stage

- 0. Pick $Y_r \in \mathcal{V}$ as the tree root (e.g. Y_m in the figure).
- 1a. Schedule the leaf-to-root messages.

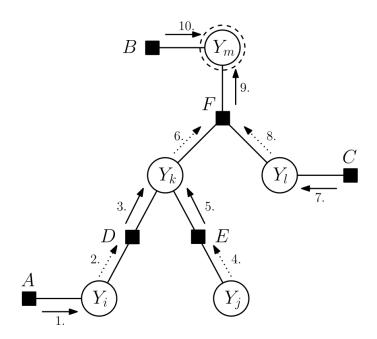


Figure: Belief propagation: leaf-to-root stage.

1b. Compute all leaf-to-root messages (detailed in the next slide).

BP: Compute Messages

Compute variable-to-factor message:

$$q_{i \to F}(y_i) = \sum_{F' \in \mathsf{nbr}_{\mathcal{G}}(i) \setminus \{F\}} r_{F' \to i}(y_i).$$

$$A = \underbrace{r_{A \to Y_i}}_{r_{B \to Y_i}} \underbrace{q_{Y_i \to F}}_{r_{B \to Y_i}} F$$

Compute factor-to-variable message:

$$r_{F o i}(y_i) = \log \sum_{y_{F \setminus \{i\}}} \exp\left(-E_F(y_F) + \sum_{i' \in \mathsf{nbr}_{\mathcal{G}}(F) \setminus \{i\}} q_{i' o F}(y_{i'})\right).$$

PGM SS19 : III : Inference on Graphical Models

BP: Compute the Partition Function

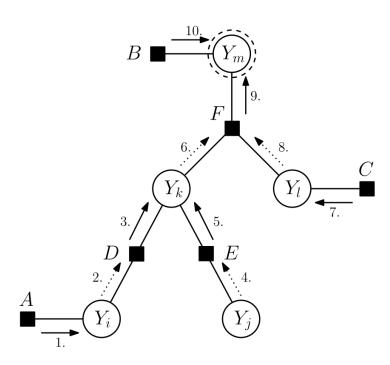


Figure: Belief propagation: leaf-to-root stage.

1c. Compute the log partition function:

$$\log Z = \log \sum_{y_r} \exp \Big(\sum_{F \in \mathsf{nbr}_{\mathcal{G}}(r)} r_{F \to r}(y_r) \Big).$$

PGM SS19: III: Inference on Graphical Models

BP: Root-to-Leaf Stage

2a. Schedule the root-to-leaf messages.

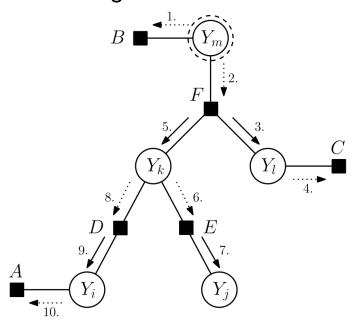


Figure: Belief propagation: root-to-leaf stage.

2b. Compute the root-to-leaf messages using the same formulas on page 12.

BP: Compute Factor / Variable Marginals

2c. Alongside Step 2b, combine messages and compute factor marginals:

$$\mu_F(y_F) := p(y_F) = \exp\Big(-E_F(y_F) + \sum_{i \in \mathsf{nbr}_\mathcal{G}(F)} q_{i o F}(y_i) - \log Z\Big),$$

as well as variable marginals:

$$\mu_i(y_i) := p(y_i) = \exp\Big(\sum_{F \in \mathsf{nbr}_\mathcal{G}(i)} r_{F o i}(y_i) - \log Z\Big).$$

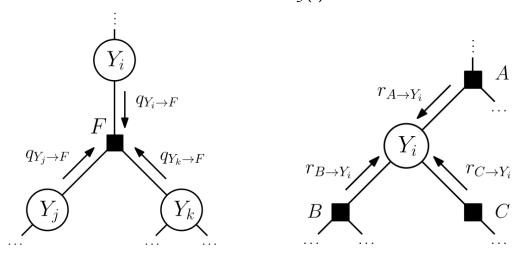


Figure: (left) Factor marginal; (right) Variable marginal.

BP on Pairwise MRFs (as exercise)

For a pairwise MRF $\mathcal{H} = (\mathcal{V}, \mathcal{E})$, the joint distribution is factorized by

$$p(y) = \exp\Big(-\sum_{i \in \mathcal{V}} E_i(y_i) - \sum_{(i,j) \in \mathcal{E}} E_{ij}(y_i, y_j) - \log Z\Big).$$

BP on such pairwise MRF can be simplified:

Variable-to-variable message is computed by

$$m_{i
ightarrow j}(y_j) = \log\sum_{y_i} \exp\Big(-E_i(y_i) - E_{ij}(y_i,y_j) + \sum_{k\in \mathsf{nbr}_{\mathcal{H}}(i)\setminus\{j\}} m_{k
ightarrow i}(y_i)\Big).$$

Variable marginal is computed by

$$\mu_i(y_i) = \exp\Big(-E_i(y_i) + \sum_{k \in \mathsf{nbr}_{\mathcal{H}}(i)} m_{k \to i}(y_i) - \log Z\Big).$$

Further Reading

- Koller & Friedman, Chapters 9, 10.
- Murphy, Chapter 20.
- Nowozin & Lampert, Section 3.1.

Variational Inference

Outline of this Section

- Basic idea: Variational inference.
- Mean field (MF) method.
- Loopy belief propagation (LBP).

Approximation by Tractable Distributions

- Goal: probabilistic inference on joint distribution p(y) represented by *general* MRF (i.e. possibly with loops).
- Instead of tackling the inference on p directly, we first seek for an approximation q within a family Q consisting of "tractable" distributions:

$$q^* = \arg\min_{q \in \mathcal{Q}} \mathsf{KL}(q \mid p)$$
.

• The **Kullback-Leibler (KL) divergence** (a.k.a. *relative entropy*) between two distributions q, p (assuming the "absolute continuity" $q \ll p$) is defined by

$$\mathsf{KL}\left(q\,|\,p
ight) = \sum_{y} q(y)\lograc{q(y)}{p(y)}.$$

- Basic properties of KL:
 - 1. KL(q|p) = 0 iff p = q.
 - 2. $KL(q|p) \ge 0 \forall q, p$.
 - 3. $KL(\cdot | \cdot)$ is not symmetric. Nor does it satisfy the triangle inequality.

Preliminaries to Variational Inference

• Represented by a factor graph $\mathcal{G} = (\mathcal{V}, \mathcal{F}, \mathcal{E})$, p takes the form

$$p(y) = \exp\Big(-\sum_{F \in \mathcal{F}} E_F(y_F) - \log Z\Big).$$

Plug p into KL divergence →

$$\mathsf{KL}\left(q \mid p\right) = \sum_{y} q(y) \log \frac{q(y)}{p(y)} = \sum_{y} q(y) \log q(y) - \sum_{y} q(y) \log p(y)$$

$$= -H(q) + \sum_{F \in \mathcal{F}} \sum_{y_F} \mu_F[q](y_F) \mathcal{E}_F(y_F) + \log Z.$$

- H(q) is the **entropy** of distribution q.
- $\mu_F[q]$ is the marginal distribution of q over variables Y_F .
- $F_{\text{Gibbs}}(q;p) := \text{KL}(q|p) \log Z = -H(q) + \sum_{F \in \mathcal{F}} \sum_{y_F} \mu_F[q](y_F) E_F(y_F)$ is called the **Gibbs free energy**.
- $\mathsf{KL}(q|p) \geq 0 \Rightarrow \mathsf{log}\, Z$ is lower bounded by $-F_{\mathsf{Gibbs}}(q;p)$.

Mean Field Approximation

In (naive) **mean field** method, Q consists of q factorized by only unaries:

$$q(y) = \prod_{i \in \mathcal{V}} q_i(y_i).$$

Figure: (left) Original factor graph; (right) (Naive) mean field approximation.

• Such q is "tractable" because $\{q_i(y_i)\}$ provide variable marginals.

• Quick facts:
$$H(q) = \sum_{i \in \mathcal{V}} H(q_i) = -\sum_{i \in \mathcal{V}} \sum_{y_i} q_i(y_i) \log q_i(y_i),$$

$$\mu_F[q](y_F) = \prod_{i \in \mathsf{nbr}_\mathcal{G}(F)} q_i(y_i).$$

Mean Field (MF) Approximation

Derivation of MF approximation:

$$\begin{aligned} q^* &= \arg\min_{q \in \mathcal{Q}} \mathsf{KL}\left(q \,|\, p\right) = \arg\min_{q \in \mathcal{Q}} F(q; p) \\ &= \arg\min_{q \in \mathcal{Q}} - H(q) + \sum_{F \in \mathcal{F}} \sum_{y_F} \mu_F[q](y_F) E_F(y_F) \\ &= \arg\min_{\{q_i\}_{i \in \mathcal{V}}} \sum_{i \in \mathcal{V}} \sum_{y_i} q_i(y_i) \log q_i(y_i) + \sum_{F \in \mathcal{F}} \sum_{y_F} \left(\prod_{i \in \mathsf{nbr}_G(F)} q_i(y_i)\right) E_F(y_F). \end{aligned}$$

Each q_i lies in the probability simplex Δ_i , i.e.

$$q_i(y_i) \geq 0 \quad \forall y_i,$$

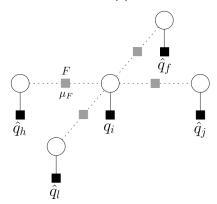
 $\sum_{y_i} q_i(y_i) = 1.$

The optimization can be resolved by *coordinate descent* (next slide).

MF Update Formula

For each block q_i , fix $\hat{q}_{i'}(y_{i'}) = q_{i'}(y_{i'}) \ \forall i' \neq i$ and solve:

$$q_i^* = \arg\min_{q_i \in \Delta_i} \sum_{y_i} q_i(y_i) \log q_i(y_i) + \sum_{F \in \mathsf{nbr}_{\mathcal{G}}(i)} \sum_{y_F} \bigg(\prod_{i' \in \mathsf{nbr}_{\mathcal{G}}(F) \setminus \{i\}} \widehat{q}_{i'}(y_{i'}) \bigg) q_i(y_i) E_F(y_F).$$



We obtain an analytical solution via Lagrange multiplier λ for $\sum_{v_i} q_i^*(y_i) = 1$:

$$egin{aligned} q_i^*(y_i) &= \expigg(-1 - \sum_{F \in \mathsf{nbr}_\mathcal{G}(i)} \sum_{\mathcal{Y}_{F \setminus \{i\}}} igg(\prod_{i' \in \mathsf{nbr}_\mathcal{G}(F) \setminus \{i\}} \widehat{q}_{i'}(y_{i'})igg) E_F(y_F) + \lambdaigg) \ &\propto \expigg(-\sum_{F \in \mathsf{nbr}_\mathcal{G}(i)} \sum_{\mathcal{Y}_{F \setminus \{i\}}} igg(\prod_{i' \in \mathsf{nbr}_\mathcal{G}(F) \setminus \{i\}} \widehat{q}_{i'}(y_{i'})igg) E_F(y_F)igg). \end{aligned}$$

Some Remarks on MF

- The term $\prod_{i' \in \mathsf{nbr}_{\mathcal{G}}(F) \setminus \{i\}} \widehat{q}_{i'}(y_{i'})$ is taken to be 1 if $\mathsf{nbr}_{\mathcal{G}}(F) \setminus \{i\} = \emptyset$.
- For a pairwise MRF \mathcal{H} , the MF update rule can be simplified as

$$q_i^*(y_i) \propto \expigg(-E_i(y_i) - \sum_{j \in \mathsf{nbr}_{\mathcal{H}}(i)} \sum_{y_j} \widehat{q}_j(y_j) E_{ij}(y_i, y_j)igg).$$

- MF is an iterative procedure which converges to a *locally optimal* solution q^* .
- Upon convergence, $\{q_i^*\}$ directly provide (approximate) variable marginals.
- The tractable family Q can be more sophisticated than factorizations of unaries in naive mean field. \rightsquigarrow *Structured mean field* approximation.

From Belief Propagation to Loopy Belief Propagation

- · Previously we have seen how belief propagation works on tree factor graphs.
- We can use similar update rules to derive loopy belief propagation (LBP).
- Although LBP does not guarantee the convergence (if at all) to the true marginal, it often performs well and is widely used in practice³.
- In the following, we first present the LBP algorithm and then interpret it from perspective of variational inference.

Loopy Belief Propagation

On a factor graph $\mathcal{G} = (\mathcal{V}, \mathcal{F}, \mathcal{E})$, (sum-product) LBP proceeds as follows.

- 0. Initialize all variable-to-factor messages: $q_{i\to F}(y_i) = 0$. Then iterate:
- 1. Update all factor-to-variable messages:

$$r_{F o i}(y_i) = \log \sum_{y_{F \setminus \{i\}}} \exp \Big(- E_F(y_F) + \sum_{i' \in \mathsf{nbr}_\mathcal{G}(F) \setminus \{i\}} q_{i' o F}(y_{i'}) \Big).$$

2. Update all (normalized) variable-to-factor messages:

$$egin{aligned} ar{q}_{i
ightarrow F}(y_i) &= \sum_{F'\in \mathsf{nbr}_{\mathcal{G}}(i)\setminus\{F\}} r_{F'
ightarrow i}(y_i), \ \delta_{i
ightarrow F} &= \log\sum_{y_i} \exp\left(ar{q}_{i
ightarrow F}(y_i)
ight), \ q_{i
ightarrow F}(y_i) &= ar{q}_{i
ightarrow F}(y_i) - \delta_{i
ightarrow F}. \end{aligned}$$

Loopy Belief Propagation (cont'd)

3. Update all factor marginals (beliefs):

$$\mu_F(y_F) \propto \exp\Big(-E_F(y_F) + \sum_{i \in \mathsf{nbr}_G(F)} q_{i \to F}(y_i)\Big).$$

4. Update all variable marginals (beliefs):

$$\mu_i(y_i) \propto \exp\Big(\sum_{F \in \mathsf{nbr}_\mathcal{G}(i)} r_{F \to i}(y_i)\Big).$$

Differences compared to BP:

- The normalization constants in the computation of marginals differ at each factor/variable.
- The log partition function is not directly available, but it can be approximated by the Bethe free energy:

$$-\log Z pprox F_{\mathsf{Bethe}}(\mu; oldsymbol{p}) := \sum_{i \in \mathcal{V}} (1 - |\operatorname{nbr}_{\mathcal{G}}(i)|) \sum_{y_i} \mu_i(y_i) \log \mu_i(y_i) \ + \sum_{F \in \mathcal{F}} \sum_{y_F} \mu_F(y_F) \Big(E_F(y_F) + \log \mu_F(y_F) \Big).$$

PGM SS19: III: Inference on Graphical Models

Interpretation of LBP

On a pairwise MRF $\mathcal{H} = (\mathcal{V}, \mathcal{E})$, LBP can be interpreted as an attempt to solve:

$$\begin{split} & \underset{\{\mu_i\}_{i \in \mathcal{V}}, \, \{\mu_{ij}\}_{(i,j) \in \mathcal{E}}}{\text{minimize}} \sum_{i \in \mathcal{V}} (1 - |\operatorname{nbr}_{\mathcal{H}}(i)|) \sum_{y_i} \mu_i(y_i) \log \mu_i(y_i) \\ & + \sum_{(i,j) \in \mathcal{E}} \sum_{y_i, y_j} \mu_{ij}(y_i, y_j) \Big(E_{ij}(y_i, y_j) + \log \mu_{ij}(y_i, y_j) \Big) \\ & \text{subject to } \mu_i(y_i) \geq 0, \ \mu_{ij}(y_i, y_j) \geq 0, \ \sum_{y_i} \mu_i(y_i) = 1, \ \sum_{y_i} \mu_{ij}(y_i, y_j) = \mu_j(y_j). \end{split}$$

- The constraints impose *local consistency* between node marginals $\{\mu_i\}$ and edge marginals $\{\mu_{ij}\}$.
- However, $\{\mu_i\}$, $\{\mu_{ij}\}$ under these constraints are may not be marginals of any joint distribution on \mathcal{H} (i.e. outer approximation of *marginal polytope*).
- LBP updates can be derived from an iterative algorithm for the above constrained optimization.
- An amazing theory on variational inference arise in this context we point those interested to the "monster" paper [Jordan & Wainwright, 2008].

LBP vs. MF

- (+) (Naive) MF optimizes over only variable marginals; LBP optimizes over variable and factor marginals under local consistency constraints.
- (+) LBP does exact inference on factor graphs without loops; MF is exact on a strict subclass of factor graphs, on which all true factor marginals are factorized by $\mu_F(y_F) = \prod_{i \in \mathsf{nbr}_{\mathcal{G}}(F)} \mu_i(y_i)$ (hence an inner approximation of marginal polytope).
- (+) While both being approximate inference techniques, LBP tends to be more accurate than MF in practice.
- (-) MF provides a lower bound of the log partition function (given by negative Gibbs free energy), while LBP does not.
- (-) Compared to LBP, it is easier to extend MF to distributions other than discrete and Gaussian, due to the simplicity of working with only variable marginals.

Further Reading

- Murphy, Chapters 21, 22.
- Nowozin & Lampert, Sections 3.2, 3.3.
- Koller & Friedman, Chapter 11.
- Jordan & Wainwright, Chapters 4, 5.

Sampling-based Inference

Outline of the Section

- Monte Carlo (MC) method.
- Markov chain Monte Carlo (MCMC) method.
- Sampling of Bayesian network and Markov random field.

Basic Principle of Sampling

Given a distribution p, we can approximate p using a finite sequence of **samples** $\{x_n\}_{n=1}^N$ in the sense that:

$$\mathbb{E}_{x \sim p}[f(x)] = \sum_{x} f(x)p(x) \approx \frac{1}{N} \sum_{n=1}^{N} f(x_n) \quad \text{for any function } f.$$

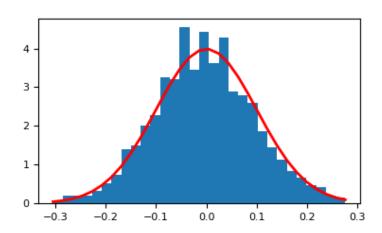


Figure: Sampling of a Gaussian⁴.

⁴https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html PGM SS19: III: Inference on Graphical Models

Pseudo-Random Number Generator

Linear congruential generator for sampling Unif(0, 1):

$$x_{n+1} = (a \cdot x_n + c) \mod m$$
.

- Most fundamental sampler above all.
- The generated samples are *pseudo-random* $\{x_n\}$ are "deterministic" if the generator (i.e. parameters a, c, m) and the *seed* x_0 are fixed.

Source	modulus m	multiplier a	increment c	output bits of seed in rand() or Random(L)
Numerical Recipes	232	1664525	1013904223	
Borland C/C++	232	22695477	1	bits 3016 in rand(), 300 in Irand()
glibc (used by GCC) ^[9]	231	1103515245	12345	bits 300
ANSI C: Watcom, Digital Mars, CodeWarrior, IBM VisualAge C/C++ [10] C90, C99, C11: Suggestion in the ISO/IEC 9899 [11], C18	231	1103515245	12345	bits 3016
Borland Delphi, Virtual Pascal	232	134775813	1	bits 6332 of (seed * L)
Turbo Pascal	232	134775813 (0x8088405 ₁₈)	1	
Microsoft Visual/Quick C/C++	232	214013 (343FD ₁₆)	2531011 (269EC3, ₁₆)	bits 3016
Microsoft Visual Basic (6 and earlier) ^[12]	224	1140671485 (43FD43FD ₁₆)	12820163 (C39EC3 ₁₆)	
RtlUniform from Native API ^[13]	231 - 1	2147483629 (7FFFFED ₁₆)	2147483587 (7FFFFC3 ₁₆)	
Apple CarbonLib, C++11's minstd_rand0 [14]	231 - 1	16807	0	see MINSTD
C++11's minstd_rand [14]	231 - 1	48271	0	see MINSTD
MMIX by Donald Knuth	264	6364136223846793005	1442695040888963407	
Newlib, Musl	284	6364136223846793005	1	bits 6332
VMS's MTH\$RANDOM,[15] old versions of glibc	232	69069 (10DCD ₁₆)	1	
Java's java.util.Random, POSIX [in]rand48, glibc [in]rand48[_r]	2 ⁴⁸	25214903917 (5DEECE66D ₁₈)	11	bits 4716

Figure: Commonly used linear congruential generators⁵.

⁵https://en.wikipedia.org/wiki/Linear_congruential_generator PGM SS19: III: Inference on Graphical Models

Sampling Gaussians

- Sample univariate Gaussian distribution by Box-Muller method:
 - 1. Sample $(z_1, z_2) \sim p_z(z_1, z_2) = \frac{1}{\pi} \mathbf{1} \{z_1^2 + z_2^2 \le 1\}$ (i.e. uniform distribution supported on the unit 2D circle).
 - 2. Perform the Box-Muller transformation and output x_1, x_2 :

$$x_i = z_i \sqrt{\frac{-2\log(z_1^2 + z_2^2)}{z_1^2 + z_2^2}}, \quad i \in \{1, 2\}.$$

<u>Fact</u>: x_1, x_2 are two i.i.d. samples under Normal(0, 1):

$$p_x(x_1, x_2) = p_z(z_1, z_2) \left| \frac{\partial(z_1, z_2)}{\partial(x_1, x_2)} \right| = \frac{1}{\sqrt{2\pi}} \exp(-x_1^2/2) \cdot \frac{1}{\sqrt{2\pi}} \exp(-x_2^2/2).$$

- Sample multivariate Gaussian distribution, $y \sim \text{Normal}(\mu, \Sigma)$, by:
 - 1. Perform Cholesky decomposition $\Sigma = LL^{\top}$.
 - 2. Sample $x \sim \text{Normal}(0, I)$, and output $y := Lx + \mu$.

Fact: $\mathbb{E}[y] = \mu$, and $Var[y] = L Var[x]L^{\top} = LIL^{\top} = \Sigma$.

Sampling by Inverse CDF

Sample by inverse Cumulative Distribution Function:

• Let $u \sim \text{Unif}(0,1)$ and F_p be the CDF for (univariate) distribution p, i.e.

$$F_p(y) := \int_{-\infty}^y p(x) dx = \int_{-\infty}^\infty \mathbf{1}\{x \leq y\} p(x) dx.$$

- Note that $x \sim p \Leftrightarrow P(x \leq y) = F_p(y)$.
- We assert $F_p^{-1}(u) \sim p$, since

$$P(F_p^{-1}(u) \le y) = P(u \le F_p(y))$$
 (since F_p is monotone)
= $F_p(y)$. (since $P(u \le v) = v \ \forall v \in [0, 1]$)

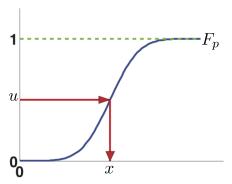


Figure: Sampling using inverse CDF [Murphy, Figure 23.1].

Rejection Sampling

- Inverse CDF sampling requires explicit knowledge of F_p^{-1} .
- Rejection Sampling:

Require: *unnormalized* target distribution \widetilde{p} (i.e. $\widetilde{p}(x)/Z_p = p(x)$ for target distribution p), *proposal distribution* q and constant M > 0 s.t. $Mq(x) \ge \widetilde{p}(x) \ \forall x \ (\Rightarrow p \ll q)$.

- 1. Sample $x \sim q$, and $u \sim \text{Unif}(0, 1)$.
- 2. If $u > \frac{\widetilde{p}(x)}{Ma(x)}$, reject the proposed sample x; otherwise, accept x.

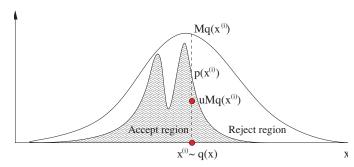


Figure: Rejection sampling [Murphy, Figure 23.2].

• <u>Proof</u>: (univariate case) $P(x \le y | x \text{ accepted}) = \frac{P(x \le y, x \text{ accepted})}{P(x \text{ accepted})} = \frac{\iint \mathbf{1}\{u \le \widetilde{p}(x)/(Mq(x)), x \le y\}q(x)du\,dx}{\iint \mathbf{1}\{u \le \widetilde{p}(x)/(Mq(x))\}q(x)du\,dx} = \frac{\frac{1}{M}\int_{-\infty}^{y}\widetilde{p}(x)dx}{\frac{1}{M}\int_{-\infty}^{\infty}\widetilde{p}(x)dx} = F_p(y).$

PGM SS19 : III : Inference on Graphical Models

Importance Sampling

- In rejection sampling, $P(x \text{ accepted}) = \frac{1}{M} \int_{-\infty}^{\infty} \widetilde{p}(x) dx$, i.e., many proposed samples are potentially wasted.
- In contrast, **importance sampling** uses all samples by weighting them:

$$\mathbb{E}_{x\sim p}[f(x)] = \int f(x) \frac{p(x)}{q(x)} q(x) dx \approx \frac{1}{N} \sum_{n=1}^{N} w_n f(x_n),$$

with $x_n \sim q$ i.i.d. and $w_n = \frac{p(x_n)}{q(x_n)}$.

• Extend importance sampling to *unnormalized* distributions \widetilde{p} , \widetilde{q} :

$$\mathbb{E}_{x \sim p}[f(x)] = \frac{Z_q}{Z_p} \int f(x) \frac{\widetilde{p}(x)}{\widetilde{q}(x)} q(x) dx \approx \frac{Z_q}{Z_p} \frac{1}{N} \sum_{n=1}^N \frac{\widetilde{p}(x_n)}{\widetilde{q}(x_n)} f(x_n), \quad x_n \sim q \text{ i.i.d.}$$

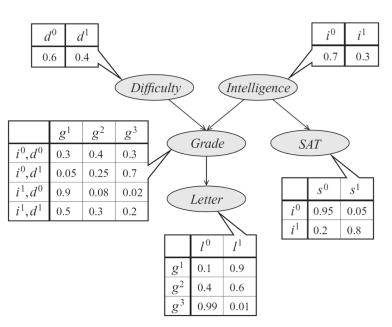
$$\frac{Z_p}{Z_q} = \int \frac{1}{Z_q} \widetilde{p}(x) dx = \int \frac{\widetilde{p}(x)}{\widetilde{q}(x)} q(x) dx \approx \frac{1}{N} \sum_{n=1}^N \frac{\widetilde{p}(x_n)}{\widetilde{q}(x_n)}, \quad x_n' \sim q \text{ i.i.d.}$$

We often take $x'_n = x_n$. For finite N, this yields a *biased estimator* of p.

Sampling of Bayesian Network

Recall that the distribution represented by BN is given by

$$p(x) = \prod_{i \in \mathcal{V}} p(x_i|(x_j)_{j \in Pa_{\mathcal{G}}(i)}).$$



Ancestral sampling: Given that no variables are observed, we can follow the topological order of the BN and sample each individual conditional distribution.

Sampling of BN with Evidence

In case the BN \mathcal{G} contains observed nodes (called **evidence**), we can modify ancestral sampling (AS) as follows:

- Logic sampling: Perform AS. Whenever a sampled node takes different value from the evidence, reject the whole sample and start again.
- LS is closely related to rejection sampling. Unsurprisingly, it is inefficient for wasting samples.
- **Likelihood weighting**: Perform AS. Whenever node i is observed (written $i \in \mathcal{O}$), we *clamp* the observed value, i.e. $x_i := \bar{x}_i$, and *weight* the whole sample x by the probability of the clamped node $p(\bar{x}_i|x_{\text{Pa}_{\mathcal{G}}(i)})$.
- LW can be interpreted as importance sampling with weights given by:

$$w(x) = \frac{\widetilde{p}(x)}{q(x)} = \frac{\mathbf{1}\{x_{\mathcal{O}} = \overline{x}_{\mathcal{O}}\} \prod_{i \in \mathcal{V}} p(x_i | x_{\mathsf{Pa}_{\mathcal{G}}(i)})}{\prod_{i \in \mathcal{V} \setminus \mathcal{O}} p(x_i | x_{\mathsf{Pa}_{\mathcal{G}}(i)}) \prod_{i \in \mathcal{O}} \delta_{\overline{x}_i}(x_i)} = \prod_{i \in \mathcal{O}} p(\overline{x}_i | x_{\mathsf{Pa}_{\mathcal{G}}(i)}).$$

$$\delta_{\bar{x}}$$
 denotes the **Dirac distribution** defined by $\delta_{\bar{x}}(x) = \begin{cases} 1 & \text{if } x = \bar{x}, \\ 0 & \text{otherwise.} \end{cases}$

Towards Markov Chain Monte Carlo

- Monte Carlo sampling requires exact or rough knowledge of the partition function (of an MRF), hence impractical for high dimensional distributions.
- Instead of generating i.i.d. samples, **Markov Chain Monte Carlo** (MCMC) constructs a *Markov chain* using "adaptive" proposal distributions, in a way that the Markov chain converges to a stationary distribution identical to the target distribution.

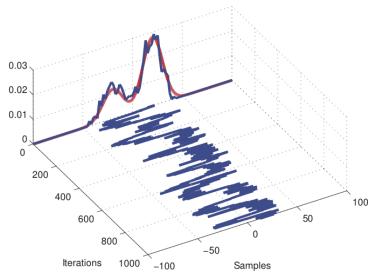


Figure: Sampling by MCMC [Murphy, Figure 24.7].

Markov Chain

• The (discrete-time) **Markov chain** (MC) is a sequence of RVs $(X_n)_{n=1}^{\infty}$ satisfying the Markov property:

$$P(X_{n+1} = x | X_1, ..., X_n \text{ given}) = P(X_{n+1} = x | X_n \text{ given}).$$

"The future depends on the past only through the present."

- Further assume:
 - 1. All X_n has a finite state space \mathcal{X} .
 - 2. The MC is *time-homogeneous*, i.e., the transition probability is time-independent

$$P(X_{n+1}=x'|X_n=x)=:\pi(x'|x)\quad\forall n,$$

with $\pi(x'|x) \ge 0$, $\sum_{x'} \pi(x'|x) = 1$. π is the **transition kernel** of the MC.

• Denote by p_n the distribution at time step n:

$$p_n(x) = P(X_n = x)$$
 \Rightarrow $p_{n+1}(x') = \sum_x p_n(x)\pi(x'|x).$

Relevant Notions on Markov Chain

• p_* is a **stationary distribution** for the MC if

$$p_*(x') = \sum_{x} p_*(x) \pi(x'|x) \ \forall x' \in \mathcal{X}.$$

The MC is irreducible if

$$\forall x, x' \in \mathcal{X} \ \exists n(x, x') \ \text{s.t.} \ P(X_n = x' | X_0 = x) > 0,$$

i.e., it is possible to get to any state from any state in finite steps.

• A state $x \in \mathcal{X}$ has *period* T_x if

$$T_X = \gcd\{n > 0 : P(X_n = x | X_0 = x) > 0\},$$
 # "greatest common divisor" i.e., any loop over state x must occur in a multiple of T_X steps.

We say the MC is aperiodic if $T_x = 1 \ \forall x \in \mathcal{X}$.

• The MC is regular if

$$\exists n \text{ s.t. } P(X_n = x' | X_0 = x) > 0 \ \forall x, x' \in \mathcal{X}.$$

<u>Fact</u>: MC is regular \Rightarrow MC is irreducible and aperiodic.

Convergence to Stationary Distribution

<u>Theorem 1</u>: If the transition kernel π of a Markov chain satisfies the *detailed* balance condition for some distribution p_* :

$$p_*(x)\pi(x'|x) = p_*(x')\pi(x|x') \quad \forall x, x' \in \mathcal{X},$$

then p_* is a stationary distribution for the Markov chain.

Proof:
$$\sum_{x} p_*(x) \pi(x'|x) = \sum_{x} p_*(x') \pi(x|x') = p_*(x') \sum_{x} \pi(x|x') = p_*(x')$$
.

<u>Theorem 2</u>⁶: Every irreducible, aperiodic, finite-state Markov chain has a limiting distribution

$$p_*(x') = \lim_{n \to \infty} \sum_{x} P(X_n = x' | X_0 = x) p_0(x),$$

regardless of the initial distribution p_0 . Indeed, p_* is equal to the unique stationary distribution of the MC.

PGM SS19 : III : Inference on Graphical Models

Metropolis-Hastings Algorithm

Metropolis-Hastings (MH) algorithm:

Input: unnormalized target distribution \widetilde{p} (i.e. $p_*(x) = \widetilde{p}(x)/Z_p$), proposal distribution $q(\cdot|\cdot)$, initial sample x_0 . Loop n=0,1,2,... as follows:

- 1. Set $x = x_n$. Sample $x' \sim q(x'|x)$.
- 2. Compute acceptance probability $\alpha = \frac{\widetilde{p}(x')q(x|x')}{\widetilde{p}(x)q(x'|x)}$.

 3. Compute $r = \min(1, \alpha)$. Sample $u \sim \text{Unif}(0, 1)$.
- 4. Set new sample to: $x_{n+1} = \begin{cases} x' & \text{if } u < r, \\ x_n & \text{if } u > r. \end{cases}$

Some remarks:

- For a given target distribution p_* , a proposal distribution q is valid if $\operatorname{supp}(p_*) \subset \cup_x \operatorname{supp}(q(\cdot|x))$, i.e. $\forall x'$ with $p_*(x') > 0 \; \exists x \; \text{s.t.} \; q(x'|x) > 0$.
- If q is symmetric, i.e. q(x'|x) = q(x|x'), then MH simplifies to the Metropolis algorithm with $\alpha = \frac{\widetilde{p}(x')}{\widetilde{p}(x)}$. Hastings made the correction for asymmetric q.

Analysis of MH Algorithm

We analyze with convergence of the MH algorithm:

1. MH generates a Markov chain with the transition kernel:

$$\pi(x'|x) = \begin{cases} q(x'|x)r(x'|x) & \text{if } x' \neq x, \\ q(x|x) + \sum_{x' \neq x} q(x'|x)(1 - r(x'|x)) & \text{if } x' = x. \end{cases}$$

r(x'|x) is the conditional probability that x' is accepted after being proposed. We will show that the Markov chain satisfies the detailed balance condition:

$$p_*(x)\pi(x'|x) = p_*(x')\pi(x|x').$$

2. Let two states x and x' ($x \neq x'$) be arbitrarily fixed. Either

$$p_*(x)\pi(x'|x) \leq p_*(x')\pi(x|x'), \tag{\dagger}$$

or the reversed inequality holds. Without loss of generality, we proceed with inequality (†).

Analysis of MH Algorithm (cont'd)

$$p_*(x)\pi(x'|x) \le p_*(x')\pi(x|x'). \tag{\dagger}$$

3.
$$(\dagger) \Rightarrow \alpha(x'|x) = \frac{p_*(x')q(x|x')}{p_*(x)q(x'|x)} \le 1 \Rightarrow r(x'|x) = \alpha(x'|x)$$

 $\Rightarrow \pi(x'|x) = q(x'|x)r(x'|x) = q(x'|x)\frac{p_*(x')q(x|x')}{p_*(x)q(x'|x)} = \frac{p_*(x')}{p_*(x)}q(x|x').$

4.
$$(\dagger) \Rightarrow \alpha(x|x') = \frac{p_*(x)q(x'|x)}{p_*(x')q(x|x')} \geq 1 \Rightarrow r(x|x') = 1$$

 $\Rightarrow \pi(x|x') = q(x|x')r(x|x') = q(x|x').$

- 5. Combining (3) and (4), we conclude that $p_*(x)\pi(x'|x) = p_*(x')\pi(x|x')$. Hence, by Theorem 1, p_* is a stationary distribution for the Markov chain.
- 6. If in addition the Markov chain generated by the MH algorithm is irreducible and aperiodic, then by Theorem 2 the Markov chain converges to the unique stationary distribution p_* .

Gibbs Sampling

Gibbs sampling:

Input: unnormalized target distribution $\widetilde{p}((x_i)_{i=1}^{|\mathcal{V}|})$, initial sample x^0 .

Loop
$$n \in \{0, 1, 2, ...\}$$
:
Loop $i \in \{1, 2, ..., |\mathcal{V}|\}$:
Sample $x_i^{n+1} \sim p(x_i|x_{\{0, ..., i-1\}}^{n+1}, x_{\{i+1, ..., |\mathcal{V}|\}}^n)$.

Some remarks:

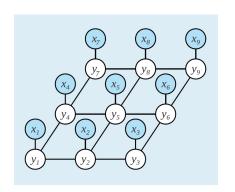
- If p (or \widetilde{p}) is represented by a graphical model (either BN or MRF), then sampling of x_i^{n+1} only involves the Markov blanket of i.
- Gibbs sampling can be interpreted as the MH algorithm with the proposal:

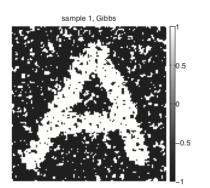
$$q(x'|x) = p(x'_i|x'_{\mathcal{V}\setminus\{i\}})\delta_{x_{\mathcal{V}\setminus\{i\}}}(x'_{\mathcal{V}\setminus\{i\}}),$$

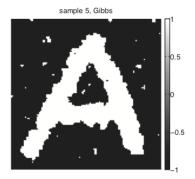
and 100% acceptance rate:

$$\alpha = \frac{p(x')q(x|x')}{p(x)q(x'|x)} = \frac{p(x'_i|x'_{\mathcal{V}\setminus\{i\}})p(x'_{\mathcal{V}\setminus\{i\}})p(x_i|x_{\mathcal{V}\setminus\{i\}})\delta_{x'_{\mathcal{V}\setminus\{i\}}}(x_{\mathcal{V}\setminus\{i\}})}{p(x_i|x_{\mathcal{V}\setminus\{i\}})p(x_{\mathcal{V}\setminus\{i\}})p(x'_i|x'_{\mathcal{V}\setminus\{i\}})\delta_{x_{\mathcal{V}\setminus\{i\}}}(x'_{\mathcal{V}\setminus\{i\}})} = 1.$$

Example: Gibbs Sampling for Pairwise CRF







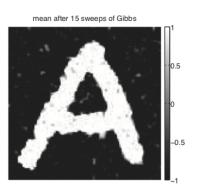


Figure: Gibbs Sampling for Pairwise CRF¹.

We can apply Gibbs sampling to find

$$y \sim p(y|x) \propto \exp\Big(-\sum_{i \in \mathcal{V}} E_i(y_i; x_i) - \sum_{(i,j) \in \mathcal{E}} E_{ij}(y_i, y_j)\Big).$$

For each $i \in \mathcal{V}$, sample (e.g. by inverse CDF method):

$$y_i^{n+1} \sim p(y_i|x_i, y_{\mathsf{nbr}(i)}^n) \propto \exp\Big(-E_i(y_i) - \sum_{j \in \mathsf{nbr}(i)} E_{ij}(y_i, y_j^n)\Big).$$

⁷Source of images: [Murphy, Figure 24.1]. PGM SS19: III: Inference on Graphical Models

Further Reading

- Murphy, Chapters 23, 24.
- Nowozin & Lampert, Section 3.4.
- Koller & Friedman, Chapter 12.

MAP Inference

More about MAP Inference

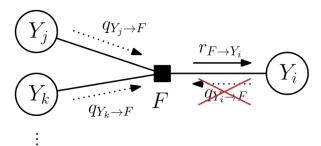
- So far this section has been focusing on probabilistic inference.
- MAP inference is about finding arg $\max_{y} p(y)$ or arg $\max_{y} p(y|x)$.
- To some extent, MAP inference is easier than probabilistic inference for the reason that the partition function Z (in the context of MRF) can be ignored in MAP inference.
- Probabilistic inference algorithms (e.g. variable elimination, (loopy) belief propagation) have analogs for MAP inference: sum-product → max-product.
- There also exist fast specialized MAP inference algorithms. We will show one such example: *graph-cut algorithm*.

Max-Product Loopy Belief Propagation

On a factor graph $\mathcal{G} = (\mathcal{V}, \mathcal{F}, \mathcal{E})$, the max-product LBP proceeds as follows.

- 0. Initialize all variable-to-factor messages: $q_{i\to F}(y_i) = 0$. Then iterate:
- 1. Update all factor-to-variable messages:

$$r_{F o i}(y_i) = \max_{y_{F \setminus \{i\}}} \Big(-E_F(y_F) + \sum_{i' \in \mathsf{nbr}_\mathcal{G}(F) \setminus \{i\}} q_{i' o F}(y_{i'}) \Big).$$



2. Update the max-beliefs:

$$\mu_i(\mathbf{y}_i) = \sum_{F \in \mathsf{nbr}_{\mathcal{G}}(i)} r_{F \to i}(\mathbf{y}_i),$$

and their maximizers $y_i^* = \arg \max_{y_i} \mu_i(y_i)$.

Max-Product Loopy Belief Propagation (cont'd)

3. Update all (normalized) variable-to-factor messages:

$$egin{aligned} ar{q}_{i
ightarrow F}(y_i) &= \sum_{F' \in \mathsf{nbr}_{\mathcal{G}}(i) \setminus \{F\}} r_{F'
ightarrow i}(y_i), \ \delta_{i
ightarrow F} &= \overline{\sum}_{y_i} ar{q}_{i
ightarrow F}(y_i), & \# \overline{\sum}_{i
ightarrow i} \mathrm{stands} \ \mathrm{for} \ \mathrm{averaged} \ \mathrm{sum}. \ q_{i
ightarrow F}(y_i) &= ar{q}_{i
ightarrow F}(y_i) - \delta_{i
ightarrow F}. & \# \mathrm{Normalization} \ \Rightarrow \sum_{y_i} q_{i
ightarrow F}(y_i) &= 0. \end{aligned}$$

Some comments:

- Due to computation in log-domain, the above algorithm is sometimes called the max-sum loopy belief propagation.
- Max-product LBP is exact for tree factor graphs, upon completion of the leaf-to-root and root-to-leaf updates.

 $r_{B \to Y_i}$

Graph-Cut Algorithm

- **Graph cut** algorithms can solve "certain" MAP inference tasks on MRFs in polynomial time. They are widely used in computer vision applications⁸.
- Next we demonstrate graph cut on *binary-valued* pairwise MRF (V, \mathcal{E}) :

$$p(x) = \frac{1}{Z} \exp \Big(-\sum_{i \in \mathcal{V}} E_i(x_i) - \sum_{(i,j) \in \mathcal{E}} E_{ij}(x_i, x_j) \Big), \quad x \in \{0, 1\}^{\mathcal{V}}.$$

Assume that all pairwise energies take the special form

$$E_{ij}(x_i, x_j) = \begin{cases} 0 & \text{if } x_i = x_j, \\ \lambda_{ij} & \text{if } x_i \neq x_j, \end{cases}$$

with $\lambda_{ij} \geq 0 \ \forall (i,j) \in \mathcal{E}$. This encourages neighboring nodes to have the same value. The overall model is called the "generalized Ising model".

• Also assume for all $i \in \mathcal{V}$ that either $E_i(0) = 0$ or $E_i(1) = 0$.

⁸Boykov and Kolmogorov, "An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision". PGM SS19: III: Inference on Graphical Models

Construction of Max-Flow/Min-Cut Problem

- Construct a graph such that:
 - The nodes are $\mathcal{V} \cup \{s, t\}$, where s is the source and t is the sink.
 - If $E_i(1) = 0$, introduce an edge $i \to t$ with cost $E_i(0)$.
 - If $E_i(0) = 0$, introduce an edge $s \to i$ with cost $E_i(1)$.
 - − If $(i, j) \in \mathcal{E}$, introduce both edges $i \to j$ and $j \to i$ with cost λ_{ij} .
- The st-cut cost on the constructed graph is equal to the MAP energy:

$$\sum_{i:x_i=0,\ j:x_j=1} \mathsf{cost}(x_i,x_j) = \sum_{i\in\mathcal{V}} E_i(x_i) + \sum_{(i,j)\in\mathcal{E}} E_{ij}(x_i,x_j).$$

Compute a minimal st-cut, e.g. by Ford-Fulkerson algorithm or its variants.

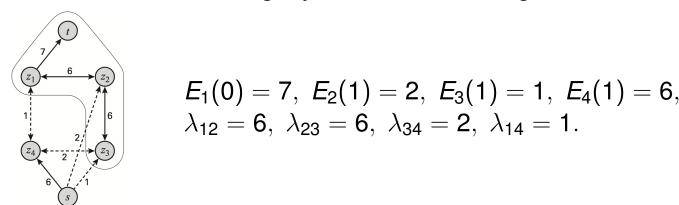


Figure: Graph cut applied to an MRF with 4 nodes [Koller & Friedman, Figure 13.5].

Extension of Graph Cut to Submodular Energies

- We now extend graph cut to binary-valued pairwise MRF $(\mathcal{V}, \mathcal{E})$ with submodular energies.
- A pairwise energy $E_{ij}(x_i, x_j)$ is said to be **submodular** if

$$E_{ij}(1,1)+E_{ij}(0,0)\leq E_{ij}(0,1)+E_{ij}(1,0).$$

· Construct new energies as follows:

Initialize
$$\widetilde{E}_{i}(\cdot) = E_{i}(\cdot) \ \forall i \in \mathcal{V}, \ E_{i,j}(\cdot, \cdot) = 0 \ \forall (i,j) \in \mathcal{E}.$$

Loop $(i,j) \in \mathcal{E}$:
 $\widetilde{E}_{i}(1) = \widetilde{E}_{i}(1) + E_{ij}(1,0) - E_{ij}(0,0).$
 $\widetilde{E}_{j}(1) = \widetilde{E}_{j}(1) + E_{ij}(1,1) - E_{ij}(1,0).$
 $\widetilde{E}_{ij}(0,1) = E_{ij}(1,0) + E_{ij}(0,1) - E_{ij}(0,0) - E_{ij}(1,1).$

- Construct a graph such that:
 - The nodes are $\mathcal{V} \cup \{s, t\}$, where s is the source and t is the sink.
 - If $\widetilde{E}_i(1) \geq \widetilde{E}_i(0)$, introduce an edge $s \to i$ with cost $\widetilde{E}_i(1) \widetilde{E}_i(0)$.
 - If $\widetilde{E}_i(1) \leq \widetilde{E}_i(0)$, introduce an edge $i \to t$ with cost $\widetilde{E}_i(0) \widetilde{E}_i(1)$.
 - If $(i,j) \in \mathcal{E}$ and $\widetilde{E}_{ij}(0,1) > 0$, introduce an edge $i \to j$ with cost $\widetilde{E}_{ij}(0,1)$.

Further Reading

Some interesting topics that are not covered in the lecture:

- Extension of graph cut to non-binary-valued MRFs: alpha-expansion, alpha-beta swap.
- Linear programming relaxation, and its connection to max-product (loopy) belief propagation.
- Dual decomposition.

Further reading:

- · Murphy, Section 22.6.
- Koller & Friedman, Chapter 13.