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Motivation

— Many computer vision tasks boil down to inference on graphical models.

Denoising Optical flow Stereo matching

1. Probabilistic inference: compute marginal distribution
=> ply.x
X

2. MAP inference: compute maximum of posterior distribution

arg max p(y|x).
y
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Exact Inference
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Outline of the Section

- Basic idea: Variable elimination.
- Junction tree algorithm on arbitrary MRFs.

- Belief propagation on tree factor graphs.
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Example: Marginal Query on a "Chain" MRF

Joint distribution represented by MRF:

1
p(y1, Y2, Y3, Ya) = E¢1 (V1) - P12(y1, ¥2) - P23(V2, ¥3) - 34(Va, Ya) - Palya).

LOL OO O

Query about marginal distribution p(y>) =7
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Variable Elimination

Apply variable elimination (VE) to the marginal query:
p(y2) — Z ,0(}/1 » Y2, V3, y4)

Yi.aYe
_ Z 12¢1(y1)¢12(y1,yz)(bzs(}/z,Y3)¢34(Y37Y4)¢4(Y4)
y1 Y s
Z Z (¢1 y1)d12(y4, Y2)> Ey: ((/523(}’2»}’3) Ey: (634(y3, ya)Pa(ya)) )
— My a(ys) a = —: My a(s) ’
- %m1 La(ye) %: (¢23(y2, Y3)m4%3(}’3))
1 = —: ms_2(y2) ”
= > S2(Y2)Masa(y2),
Z = m_a(y2)msa(y2).

Y2
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Variable Elimination and Beyond

>»<
OO OO

. This algorithm is called sum-product VE.

- Sum-product VE yields exact inference (of one node marginal) on any
tree-structured factor graph.

- Observed nodes (a.k.a. evidence) can be introduced as reduced factors.

. A similar algorithm can be derived for MAP inference — simply switch all
"sum" to "max". The resulting algorithm is called max-product VE.

- We shall consider two different extensions beyond VE:

1. Inference on arbitrary MRFs? ~~ Junction tree algorithm.

2. Compute all node/factor marginals at one shot? ~~ Belief propagation.
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Junction Tree

- For an undirected graph H = (V, £), the junction tree of H is atree T s.i.
1. The nodes of T consist of the maximal cliques of H.

2. The edge S; between two nodes C;, C; of 7 (i.e. two maximal cliques of
H) is given by S; = C; N C; (known as the running intersection property).

- ‘H is triangulated if every cycle of length > 4 has a chord. (A chord is an
edge that is not part of the cycle but connects two vertices of the cycle.)

- Theorem [Lauritzen '96]: A graph has a junction tree iff it is triangulated.

Figure:! (a) Original graph; (b) Triangulation of (a); (c) Junction tree for (b).

'Wainwright and Jordan, “Graphical Models, Exponential Families, and Variational Inference”.
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Junction Tree Algorithm (Sketch)

Sum-product message passing on a junction tree 7 appears like:

me.—c(Yene) = E vc(¥e) H me,—c(Yenc)-
ycl\c C/(Ean’T(C/)\{Cj}

Overall junction tree algorithm for exact inference on an arbitrary MRF:
1. Given an MRF with cycles, triangulate it by adding edges as necessary.
2. Form a junction tree T for the triangulated MRF.

3. Run VE on the junction tree 7.
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Belief Propagation on Tree Factor Graphs?
B

. Factor graph G = (V, F, £): assumed to be a tree.
- Neighbors of a variable or factor node:

nbrg(i) ={F e F:(i,F) € £},
nbrg(F)={ieV:(i,F)e&}

- (Log-domain) energies: Er(yr) = —log ¢or(¥F).

2|llustrations for BP are extracted from Nowozin & Lampert, 2011.
PGM SS19 : Il : Inference on Graphical Models
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BP: Leaf-to-Root Stage

0. Pick Y, € V as the tree root (e.g. Y, in the figure).

1a. Schedule the leaf-to-root messages.

Figure: Belief propagation: leaf-to-root stage.

1b. Compute all leaf-to-root messages (detailed in the next slide).

PGM SS19 : Il : Inference on Graphical Models
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BP: Compute Messages

- Compute variable-to-factor message:

qi-r(yi) = Z rei(yi)-

F'enbrg(i)\{F}

- Compute factor-to-variable message:

re—i(yi) =log ) exp ( —Er(yr)+ Y qfqp(y,-/)).

YR\ i"enbrg(F)\{/}

PGM SS19 : Il : Inference on Graphical Models

12



Computer Vision & Artificial Intelligence

@ Department of Informatics
[~

Technical University of Munich

BP: Compute the Partition Function

Figure: Belief propagation: leaf-to-root stage.

1c. Compute the log partition function:

log Z = log Z exp < Z rF_>,(y,)).

Yr Fenbrg(r)
PGM SS19 : Il : Inference on Graphical Models
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BP: Root-to-Leaf Stage

2a. Schedule the root-to-leaf messages.

Figure: Belief propagation: root-to-leaf stage.

2b. Compute the root-to-leaf messages using the same formulas on page 12.

PGM SS19 : Il : Inference on Graphical Models
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2c. Alongside Step 2b, combine messages and compute factor marginals:

ne(ye) == p(ye) = exp ( Er(yr)+ Y Qimr(yi) — log Z)
ienbrg(F)

as well as variable marginals:

pilys) = ply) =exp (D reiyi) —log Z).

Fenbrg(i)

Figure: (left) Factor marginal; (right) Variable marginal.
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BP on Pairwise MRFs (as exercise)

For a pairwise MRF H = (V, £), the joint distribution is factorized by

—exp( ZEy, ZE,,y,,yj IogZ).

ey (ij)e€

BP on such pairwise MRF can be simplified:

- Variable-to-variable message is computed by

m,-_>j(yj) = log Z exp ( — E,-(y,-) — E,-j(y,-, y,) + Z mk—>i(yi)>-

Vi kenbry (I)\{/}

- Variable marginal is computed by

pi(yi) = exp ( —E(y)+ > milyi) —log Z)-

kenbry (i)

PGM SS19 : Il : Inference on Graphical Models
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Further Reading

. Koller & Friedman, Chapters 9, 10.

« Murphy, Chapter 20.

- Nowozin & Lampert, Section 3.1.

PGM SS19 : Il : Inference on Graphical Models
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Variational Inference
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Outline of this Section

. Basic idea: Variational inference.

- Mean field (MF) method.

- Loopy belief propagation (LBP).

PGM SS19 : Il : Inference on Graphical Models
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Approximation by Tractable Distributions

- Goal: probabilistic inference on joint distribution p(y) represented by general
MRF (i.e. possibly with loops).

- Instead of tackling the inference on p directly, we first seek for an
approximation g within a family O consisting of "tractable" distributions:

g =argminKL(q|p).
qeQ

- The Kullback-Leibler (KL) divergence (a.k.a. relative entropy) between two
distributions g, p (assuming the "absolute continuity" g < p) is defined by

L(qlp) = Zq )log = ;

- Basic properties of KL:

1. KL(g|p) =0iff p=q.
2. KL(q|p) = 0Vaq,p.
3. KL (-|-) is not symmetric. Nor does it satisfy the triangle inequality.

PGM SS19 : Il : Inference on Graphical Models 20
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Preliminaries to Variational Inference
- Represented by a factor graph G = (V, F, £), p takes the form

—exp( ZEF YF) — IogZ).

- Plug p into KL divergence ~-

KL(q|p) = Zq Iog Zq )log q(y Zq )log p(y
= —H(q) + Z Z MF[CI] (vF)EF(yF) + log Z-

FeF Yyr

- H(q) is the entropy of distribution q.

- 1ue[q] is the marginal distribution of g over variables Y.

+ Faioos(q; p) == KL(q|p) —logZ = —H(q) + > _rc7 D, 1rlal(VF)EF(yF) is
called the Gibbs free energy.

- KL(g|p) > 0 = logZ is lower bounded by —Fginns(q; p)-

PGM SS19 : Il : Inference on Graphical Models 21
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Mean Field Approximation
In (naive) mean field method, O consists of g factorized by only unaries:

= ][ ay).

ey

Figure: (left) Original factor graph; (right) (Naive) mean field approximation.

- Such g is "tractable" because {qi(y;)} provide variable marginals.

- Quick facts:  H(q) = Z H(qi) = — Z Z qi(yi) log qi(yi),

ey i€V Vi
pelddve) = 1] aiv)-

ienbrg(F)
PGM SS19 : Il : Inference on Graphical Models 22
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Mean Field (MF) Approximation

Derivation of MF approximation:
q* = arg min KL(g|p)=arg min F(q; p)

= argmin —H(qg
qeQ DS ZMF[Q] (Ye)Er(yr)
FeF Yyr

= arg min Z Z qi(yi) log qi(yi) + Z Z ( H q,-(y/)) Er(yF).

taikiev i€V yi FEF yr ienbrg(F)

Each g; lies in the probability simplex A;, i.e.
qi(yi) = 0 Vy;,

> aqily) =1.
Yi

The optimization can be resolved by coordinate descent (next slide).

PGM SS19 : Il : Inference on Graphical Models 23
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For each block g, fix qi(y;) = qi(y;) Vi’ # i and solve:

g; = arg min Z aly)logai(y)+ > Y. ( 11 ?Jw(yif)> Gi(¥i) EF(Ve)-

Fenbrg(i) YF i'enbrg(F)\{i}
F gy

O 00

Qn o qj
7

We obtain an analytical solution via Lagrange multiplier A for >, q;(y;) = 1:

a)=ep(~1- 3 Z( [T @) e

Fenbrg(i) Yr\(iy ~ i'enbrg(F)\{i}

o< exp ( -y Y ( 11 CA?/f(Yi’)) EF(yF))°

Fenbrg(i) Ye\(in  ~ i'enbrg(F)\{i}
PGM SS19 : Il : Inference on Graphical Models 24
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Some Remarks on MF

+ The term [ [ycnory(r)\ 1y Gr(¥i) is taken to be 1 if nbrg(F)\{i} = 0.

. For a pairwise MRF H, the MF update rule can be simplified as

- > >.aw uyuy/)

q; (¥i) o< exp (
jEner Yj

- MF is an iterative procedure which converges to a locally optimal solution g*.
- Upon convergence, {q; } directly provide (approximate) variable marginals.

- The tractable family @ can be more sophisticated than factorizations of
unaries in naive mean field. ~» Structured mean field approximation.

PGM SS19 : Il : Inference on Graphical Models 25
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From Belief Propagation to Loopy Belief Propagation

- Previously we have seen how belief propagation works on tree factor graphs.
- We can use similar update rules to derive loopy belief propagation (LBP).

- Although LBP does not guarantee the convergence (if at all) to the true
marginal, it often performs well and is widely used in practice.

- In the following, we first present the LBP algorithm and then interpret it from
perspective of variational inference.

SMurphy et al., “Loopy Belief Propagation for Approximate Inference: An Empirical Study”.
PGM SS19 : Il : Inference on Graphical Models 26
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Loopy Belief Propagation

On a factor graph G = (V, F, £), (sum-product) LBP proceeds as follows.

0. Initialize all variable-to-factor messages: qgi_.£(y;) = 0. Then iterate:
1. Update all factor-to-variable messages:

re—i(yi) = log Z exp ( Er(yF) + Z q,qp(y,v)).

YR\{i} i'enbrg(F)\{/i}

2. Update all (normalized) variable-to-factor messages:
qi-r(yi) = Z rei(Yi),
F'enbrg(i)\{F}

Sir =log ) " exp (C_]i—>F(}/i)),
Yi
qirF(Yi) = Qisr(Yi) — disF.

PGM SS19 : Il : Inference on Graphical Models 27
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Loopy Belief Propagation (cont'd)

3. Update all factor marginals (beliefs):

MF(}/F) X exp( EF }/F Z QI—>F Yi )

IEHng )
4. Update all variable marginals (beliefs):

piyi) o< exp ( > fF—>i(Yi)>-
Fenbrg(i)

Differences compared to BP:

- The normalization constants in the computation of marginals differ at each
factor/variable.

- The log partition function is not directly available, but it can be approximated
by the Bethe free energy:

—10g Z ~ Faetme(i: p) == > (1 — | nbrg(i)) " ui(yi) log pi(y:)
IS2% Yi

4 Z Z ne(Ye ( (vF) + log MF(J’F))

PGM SS19 : Il : Inference on Graphical Models 28
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Interpretation of LBP
On a pairwise MRF H = (V, 6) LBP can be interpreted as an attempt to solve:

minimize 1 — | nbry( )lo y
{nitiev, {ritijee ( | H Z,LL, y/ gﬂ/( I)

ey
+ 3wy, ( (Vi 7) + 109 14y, 1))
(Ij Eg Yi,Yj
subject to 1;(y;) > 0, wi(yvi,y;) >0, Zui(y/') =1, Zﬂij(}/iayj) = 1i(¥))-

Yi Yi
- The constraints impose local consistency between node marginals {x;} and
edge marginals {1}

- However, {u;}, {ujj} under these constraints are may not be marginals of
any joint distribution on A (i.e. outer approximation of marginal polytope).

- LBP updates can be derived from an iterative algorithm for the above
constrained optimization.

- An amazing theory on variational inference arise in this context — we point

those interested to the "monster” paper [Jordan & Wainwright, 2008].
PGM SS19 : Il : Inference on Graphical Models 29
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LBP vs. MF

(+) (Naive) MF optimizes over only variable marginals; LBP optimizes over
variable and factor marginals under local consistency constraints.

(+) LBP does exact inference on factor graphs without loops; MF is exact on a
strict subclass of factor graphs, on which all true factor marginals are
factorized by 11r(¥F) = [ Licnbro(F) 1£i(¥i) (hence an inner approximation of
marginal polytope).

(+) While both being approximate inference techniques, LBP tends to be more
accurate than MF in practice.

(—) MF provides a lower bound of the log partition function (given by negative
Gibbs free energy), while LBP does not.

(—) Compared to LBP, it is easier to extend MF to distributions other than
discrete and Gaussian, due to the simplicity of working with only variable
marginals.

PGM SS19 : Il : Inference on Graphical Models 30
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Further Reading

« Murphy, Chapters 21, 22.

- Nowozin & Lampert, Sections 3.2, 3.3.

- Koller & Friedman, Chapter 11.

. Jordan & Wainwright, Chapters 4, 5.

PGM SS19 : Il : Inference on Graphical Models
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Sampling-based Inference
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Outline of the Section

- Monte Carlo (MC) method.
- Markov chain Monte Carlo (MCMC) method.

- Sampling of Bayesian network and Markov random field.

PGM SS19 : Il : Inference on Graphical Models

33



Computer Vision & Artificial Intelligence
@ Department of Informatics
Technical University of Munich
B . I . . | f S I .

Given a distribution p, we can approximate p using a finite sequence of samples
{x,}N_. in the sense that:

N
’
Exp[f(Xx)] = Z f(x)p(x) ~ N Z f(x,) for any function f.
X n=1

—0.3 -0.2 -0.1 0.0 01 0.2 03

Figure: Sampling of a Gaussian®.

“https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html
PGM SS19 : Il : Inference on Graphical Models 34
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Pseudo-Random Number Generator
Linear congruential generator for sampling Unif(0, 1):
Xni1=(a-xp+c) mod m.
- Most fundamental sampler above all.

- The generated samples are pseudo-random — {x,} are "deterministic" if
the generator (i.e. parameters a, ¢, m) and the seed xy are fixed.

Source modulus multiplier increment output bits of seed in rand() or
m a c Random(L)

Numerical Recipes 2% 1664525 1013904223
Borland C/C++ 232 22695477 1 bits 30..16 in rand(), 30..0 in Irand()
glibc (used by GCC)!®! 201 1103515245 12345 bits 30..0
ANSI C: Watcom, Digital Mars, CodeWarrior, IBM VisualAge C/C++ [10] ’

L 23 1103515245 12345 bits 30..16
€90, C99, C11: Suggestion in the ISO/IEC 9899 ['"], C18
Borland Delphi, Virtual Pascal 232 134775813 1 bits 63..32 of (seed * L)
Turbo Pascal 232 134775813 (0x8088405,) | 1
Microsoft Visual/Quick C/C++ 2% 214013 (343FD,,) 2531011 (269EC3, ) bits 30..16
Microsoft Visual Basic (6 and earlier)['2! 22 1140671485 (43FD43FD,) | 12820163 (C39EC3,)

’ . 2147483629 2147483587
RtlUniform from Native API[13] 231 -1
(7FFFFFED,,) (TFFFFFC3,)
Apple CarbonLib, C++11's minstd_rando [14] 21-1 16807 0 see MINSTD
C++11's minstd_rand [14] 221-1 48271 0 see MINSTD
MMIX by Donald Knuth 2% 6364136223846793005 1442695040888963407
Newlib, Musl 2% 6364136223846793005 1 bits 63...32
VMS's MTHSRANDOM,!'5! old versions of glibc 2% 69069 (10DCD,,) 1
) § ) 25214903917 §
Java's java.util. Random, POSIX [InJrand48, glibc [InJrand48[_r] 2® 1 bits 47...16
(SDEECES6D,,)

Figure: Commonly used linear congruential generators®.

®https://en.wikipedia.org/wiki/Linear_congruential_generator
PGM SS19 : Il : Inference on Graphical Models
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- Sample univariate Gaussian distribution by Box-Muller method:
1. Sample (21, 2) ~ p.(z1, z2) = 11{z? + z5 < 1} (i.e. uniform distribution
supported on the unit 2D circle).
2. Perform the Box-Muller transformation and output xq, Xo:

—2] 2 2
Xj = Zi\/ 09(21 —|_22)7 ie {172}

2 2
22 + 72

Fact: x1, x» are two i.i.d. samples under Normal(0, 1):

8(21 , Zg) 1
I(x1, X2) - \/7_7? exp(—x/2). \/—_ﬂ xp(—/2).

- Sample multivariate Gaussian distribution, y ~ Normal(u, ¥), by:

1. Perform Cholesky decomposition ¥ = LL".
2. Sample x ~ Normal(0, /), and output y := Lx + p.

Fact: E[y] = i, and Var[y] = LVar[x]L' = LIL" = ¥.

PGM SS19 : Il : Inference on Graphical Models 36
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Sampling by Inverse CDF

Sample by inverse Cumulative Distribution Function:
. Let u ~ Unif(0, 1) and F, be the CDF for (univariate) distribution p, i.e.

Fly) = [ " p(x)ax = [ 1ix < yptax

—00 (0,0)

. Note that x ~ p < P(x < y) = Fy(y).

- We assert F,'(u) ~ p, since

P(F, ' (u) < y) = P(u < Fy(y)) (since F, is monotone)
= Fp(y). (since P(u<v)=v Vv e|[0,1])

Figure: Sampling using inverse CDF [Murphy, Figure 23.1].
PGM SS19 : Il : Inference on Graphical Models 37
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Rejection Sampling
+ Inverse CDF sampling requires explicit knowledge of F, .

- Rejection Sampling:
Require: unnormalized target distribution p (i.e. p(x)/Z, = p(x) for target
distribution p), proposal distribution g and constant M > 0
s.t. Mg(x) > p(x) Vx (= p < q).
1. Sample x ~ g, and u ~ Unif(0, 1).

2. Ifu> ,\50(7?))(), reject the proposed sample x; otherwise, accept x.

A

Figure: Rejection sampling [Murphy, Figure 23.2].
. Proof: (univariate case) P(x < y|x accepted) = = (’;f(){ ’a’écae‘;‘izzt)ed) _
[[ 1{u<p(x)/(Ma(x)). x<y}q(xduax _ 5[  PO)x _
oY)

JJ Hu<sp(x)/(Ma(x))}a(x)dudx 5 [Z2 p(x)adx
PGM SS19 : Il : Inference on Graphical Models
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Importance Sampling

- In rejection sampling, P(x accepted) = f p(x)dx, i.e., many proposed
samples are potentially wasted.

- In contrast, importance sampling uses all samples by weighting them:

N
B0 = [ 1008 a0x)k = 37 > wfx,)

q(x)
with X, ~ g i.i.d. and w, = 25}
. Extend importance sampling to unnormalized distributions p, q:
Z 5(X) p(x .
E,olf(x)] == | f(x)=2qg ~ =1 ~ qi.id.
slf(0] = 57 [ 1005 a0~ Z Yo~ qlid

q(x)

We often take x/, = x,. For finite N, this yields a biased estimator of p.

PGM SS19 : Il : Inference on Graphical Models
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Sampling of Bayesian Network

Recall that the distribution represented by BN is given by

p(x) = | [ p(xil()epa(n)-

ey

d()

0.6

fo,d()
i%d!
l‘]’do
ild

1

gfo1 09

g2l o4 |06

231099 o0.01

Ancestral sampling: Given that no variables are observed, we can follow the
topological order of the BN and sample each individual conditional distribution.

PGM SS19 : Il : Inference on Graphical Models
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Sampling of BN with Evidence

In case the BN G contains observed nodes (called evidence), we can modify
ancestral sampling (AS) as follows:

- Logic sampling: Perform AS. Whenever a sampled node takes different
value from the evidence, reject the whole sample and start again.

. LS is closely related to rejection sampling. Unsurprisingly, it is inefficient for
wasting samples.

- Likelihood weighting: Perform AS. Whenever node i is observed (written
i € O), we clamp the observed value, i.e. x; := X;, and weight the whole
sample x by the probability of the clamped node p(X;|Xpa,(i))-

- LW can be interpreted as importance sampling with weights given by:

p(x) _ 1ixo = Xoj]liey P(X:IXPag

w(x) = —= = p(Xxi| x
)= 30 ~ Thoo P6IArayt0) TTico )~ LLPEPPact)

1 ifx=x,

0 otherwise.
PGM SS19 : Il : Inference on Graphical Models 41
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Towards Markov Chain Monte Carlo

- Monte Carlo sampling requires exact or rough knowledge of the partition
function (of an MRF), hence impractical for high dimensional distributions.

- Instead of generating i.i.d. samples, Markov Chain Monte Carlo (MCMC)
constructs a Markov chain using "adaptive"” proposal distributions, in a way
that the Markov chain converges to a stationary distribution identical to the
target distribution.

lterations 1000 _qpp Samples

Figure: Sampling by MCMC [Murphy, Figure 24.7].

PGM SS19 : Il : Inference on Graphical Models 42
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Markov Chain

- The (discrete-time) Markov chain (MC) is a sequence of RVs (X)),
satisfying the Markov property:

P(Xni1 = x| Xy, ..., Xy given) = P(X,.1 = x| X, given).
"The future depends on the past only through the present.”

. Further assume:

1. All X, has a finite state space X.
2. The MC is time-homogeneous, i.e., the transition probability is
time-independent

P(Xn 1 = X'| Xn = x) = w(X'|x) Vn,
with 7(x’'|x) > 0, >, 7(x’|x) = 1. 7 is the transition kernel of the MC.
- Denote by p, the distribution at time step n:

Pu(x) = PXa = X) = Pos(¥) = 3 pu(X)m(X|x).
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Relevant Notions on Markov Chain

. p, is a stationary distribution for the MC if
Zp* (X'|x) Vx' e X.

- The MC is irreducible if
Vx,x' € X dn(x,x") s.t. P(X, = x'|Xo = x) >0,
l.e., it is possible to get to any state from any state in finite steps.
. A state x € X has period T, if
Ty =gcd{n>0:P(X,=x|Xo=x) >0}, #"greatestcommon divisor"

l.e., any loop over state x must occur in a multiple of T, steps.
We say the MC is aperiodicif T, =1Vx € X.

- The MC is regular if
dn s.t. P(Xp = X'|Xo=x) >0 Vx,x' € X.

Fact: MC is regular = MC is irreducible and aperiodic.
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Convergence to Stationary Distribution

Theorem 1: If the transition kernel = of a Markov chain satisfies the detailed
balance condition for some distribution p,:

p(X)m(x'[x) = p.(x)m(x[x) Vx,x € X,
then p, is a stationary distribution for the Markov chain.
Proof: 37, p.(x)m(x'|[x) = 3=, pu(X)m(x|x) = pu(x') X2, m(x]X') = p.(X).

Theorem 2°: Every irreducible, aperiodic, finite-state Markov chain has a limiting
distribution

p.(¥) = lim 3™ P(X, = x| X = x)po(x),

regardless of the initial distribution py. Indeed, p, is equal to the unique
stationary distribution of the MC.

é[Murphy, Theorem 17.2.1]
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Metropolis-Hastings Algorithm

Metropolis-Hastings (MH) algorithm:

Input: unnormalized target distribution p (i.e. p.(x) = p(x)/Z), proposal
distribution q(-|-), initial sample xp. Loop n = 0,1, 2, ... as follows:

1. Set x = x,. Sample x’ ~ q(x’|x).

~ / /
2. Compute acceptance probability o = E(X )q(x/]x ).
p(x)q(x’|x)
3. Compute r = min(1, a). Sample u ~ Unif(0, 1).
X' ifu<r,

4. Set new sample to: X,.1 = :
X, ifu>r.

Some remarks:

- For a given target distribution p,, a proposal distribution g is valid if
supp(psx) C Uxsupp(q(+|x)), i.e. Vx" with p,(x’) > 0 dx s.t. g(x|x) > 0.

- If g is symmetric, i.e. g(x’|x) = g(x|x’), then MH simplifies to the Metropolis
algorithm with a = %((f( )) Hastings made the correction for asymmetric q.
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Analysis of MH Algorith

We analyze with convergence of the MH algorithm:

1. MH generates a Markov chain with the transition kernel:
Ay = { I g
q(x|x) + Dz X [X)(1 — r(X'[x)) if X" = x.

r(x’|x) is the conditional probability that x’ is accepted after being proposed.
We will show that the Markov chain satisfies the detailed balance condition:

p(x)m(x'|x) = pu(x)(x]X").
2. Let two states x and x’ (x # x’) be arbitrarily fixed. Either

P(x)m(x'[x) < pu(x)m(x]X), (1)

or the reversed inequality holds. Without loss of generality, we proceed with
inequality (7).
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Analysis of MH Algorithm (cont'd)

p:(X)m(x'x) < p.(x )7 (x|x). (1)

p«(x')q(x|x’) <1 = r(X|x) = a(x'|x)

p.(qtx) = 7 O = el
= () = A r(x1x) g 2PITE)  BL g,

3. (1) = alX'|x) =

p(x)q(x’|x) A
p.()q(xxy = 1 7 XX =1
= 1(xx) = gUxX)r(xIxX) = g(x]x).

4. (1) = a(xx) =

5. Combining (3) and (4), we conclude that p.(x)m(x'|x) = p.(x")7(x|x').
Hence, by Theorem 1, p, is a stationary distribution for the Markov chain.

6. If in addition the Markov chain generated by the MH algorithm is irreducible
and aperiodic, then by Theorem 2 the Markov chain converges to the unique
stationary distribution p,.
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Gibbs Sampling
Gibbs sampling:
Input: unnormalized target distribution ’b((x,-)lih), initial sample x°.
Loop n € {0,1,2,...}:
Loop i€ {1,2,....|V|}:
Sample x/*" ~ p(Xi|X{n(;,r.1..,i—1}> X(i1,.. \V\})‘
Some remarks:
. If p (or p) is represented by a graphical model (either BN or MRF), then
sampling of x"*" only involves the Markov blanket of .

- Gibbs sampling can be interpreted as the MH algorithm with the proposal:
Q(X/‘X) - p(Xi/’X{J\{i})(SXV\{i}(X)/}\{i})7
and 100% acceptance rate:
p(x")q(x|x’) P(X;|X{;\{/})P(X{;\{,~})P(Xi\XV\{i})5x{,\{,}(XV\{/'})
o = ) — I / —
p(x)q(x'|x)  p(xXi[x ()P (i1 )PIX X0 113 ) 0 g (X0 11
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Example: Gibbs Samplmg for Pairwise CRF

sample 5, Gibbs

Figure: Gibbs Sampling for Pairwise CRF”.

We can apply Gibbs sampling to find
y ~ ply|x) o<e><p( > Elyix)— ) Ej y,,y,)

ey (ij)e€
For each i € V, sample (e.g. by inverse CDF method):
yin+1 ~ p(yi|xiayr,17br(i)) X €Xp < yth - Z Elj y/,y, )

jenbr(i)

"Source of images: [Murphy, Figure 24.1].
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Further Reading

« Murphy, Chapters 23, 24.

- Nowozin & Lampert, Section 3.4.

. Koller & Friedman, Chapter 12.
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MAP Inference
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More about MAP Inference

- So far this chapter has been focusing on probabilistic inference.
- MAP inference is about finding arg max, p(y) or arg max, p(y|x).

- To some extent, MAP inference is easier than probabilistic inference for the
reason that the partition function Z (in the context of MRF) can be ignored in
MAP inference.

- Probabillistic inference algorithms (e.g. variable elimination, (loopy) belief
propagation) have analogs for MAP inference: sum-product — max-product.

- There also exist fast specialized MAP inference algorithms. We will show
one such example: graph-cut algorithm.
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Max-Product Loopy Belief Propagation
On a factor graph G = (V, F, £), the max-product LBP proceeds as follows.
0. Initialize all variable-to-factor messages: g;_.r(y;) = 0. Then iterate:

1. Update all factor-to-variable messages:

re_i(y;) = max ( — Er(yF) + Z CIi’—>F(yi’))°

y .
P 'enbrg(F)\{i}
TF—y;
....... Y;
TP BRT

2. Update the max-beliefs:
pily) = > resiy),
Fenbrg(i)

and their maximizers y;* = arg maxy, ui(yi).
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Max-Product Loopy Belief Propagation (cont'd)

3. Update all (normalized) variable-to-factor messages:

qir(Yi) = Z rei(Yi),

F’'enbrg(i)\{F}

S = Zyia,-ﬁp( ¥)), # )  stands for averaged sum.
qiF(y)) = Gisr(yi) — 0isr # Normalization = ) ~ gir(y;) = 0.
Yi

Some comments:
- Due to computation in log-domain, the above algorithm is sometimes called
the max-sum loopy belief propagation.
- For tree factor graphs, max-product BP is exact upon completion of one

leaf-to-root and one root-to-leaf message updates.
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Graph-Cut Algorithm

- Graph cut algorithms can solve "certain" MAP inference tasks on MRFs in
polynomial time. They are widely used in computer vision applications®.

- Next we demonstrate graph cut on binary-valued pairwise MRF (V, £):
p(x) = —exp ( ZE (xi) — Z E,-j(x,-,xj)), x € {0,1}".
% (ij)e€
- Assume that all pairwise energies take the special form
0 ifxi=x
EU(va)(f) — I M=
Nj If X # X,

with \; > 0 V(/,) € £. This encourages neighboring nodes to have the
same value. The overall model is called the "generalized Ising model".

- Also assume that Vi € V : either E;(0) = 0, E;(1) > 0 or
Ei(1) =0, E;j(0) > 0.

8Boykov and Kolmogorov, “An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision”.
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Construction of Max-Flow/Min-Cut Problem

. Construct a graph such that:
— The nodes are V U {s, t}, where s is the source and t is the sink.
— If Ej(1) = 0, introduce an edge i — t with cost E;(0).
— If E;(0) = 0, introduce an edge s — i with cost E;(1).
— If (i,j) € &€, introduce both edges i — j and j — i with cost ).

- The st-cut cost on the constructed graph is equal to the MRF energy:

> cost(x,x) =) E(x)+ Y  Ej(x.x).

x,x'eVU{s,t} i€y (if)e€
x=0, x'=1

- Compute a minimal st-cut, e.g. by Ford-Fulkerson algorithm or its variants.

Example (graph cut applied to MRF with 4 nodes):

Ei(0) =7, Ex(1) =2, E5(1) =1, E4(1) =6,
A2 =106, Ao3 =6, Aza =2, A\g = 1.

Source: [Koller & Friedman, Figure 13.5].
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Extension of Graph Cut to Submodular Energies

- We now extend graph cut to binary-valued pairwise MRF (1, £) with
submodular energies.

. A pairwise energy Eji(x;, x;) is said to be submodular if
E;j(1,1) + E;(0,0) < E;(0,1) + Ej(1,0).

- Construct new energies as follows:
Initialize E(-) := Ei(-) Vi € V, Eij(-,-) == 0Y(i,)) € E.
Loop (i, )) € &:
E,(1) = 5,(1) -+ E,j(1 : O) — E,-,-(O, O)
5(1) = E/(1) + Eif(17 1) — EU(17O)°
E,-,-(O, 1) = E,'j(1 : O) + E,-,-(O, 1) — E,’j(O, O) — E,'j(1, 1).

. Construct a graph such that:
— The nodes are V U {s, t}, where s is the source and t is the sink.
— If E(1) E(O) introduce an edge s — i with cost E(1) Ei(0).
— If Ei(1) < E;(0), introduce an edge i — t with cost E;(0) — E,-(1).
— If (i,j) € £ and E,/(O 1) > 0, introduce an edge i — j with cost E,,(O 1).
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Further Reading

Further reading:
« Murphy, Section 22.6.
- Koller & Friedman, Chapter 13.

Interesting topics that are not covered in the lecture:

- Extension of graph cut to non-binary-valued MRFs: alpha-expansion,
alpha-beta swap.

- Linear programming relaxation, and its connection to max-product (loopy)
belief propagation.

- Dual decomposition.
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