
Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

IV : Learning Graphical Models

Tao Wu, Yuesong Shen, Zhenzhang Ye

Computer Vision & Artificial Intelligence
Technical University of Munich

Welcome to Learning
X Graphical Model Representation

X Inference on Graphical Models

 Learning Graphical Models

Source: The Matrix (1999).
PGM SS19 : IV : Learning Graphical Models 2

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

Goal of Learning

• Density estimation: Find p as "close" as possible to the ground-truth
distribution r , e.g., in terms of KL divergence (a.k.a. M-projection):

min
θ

KL (r | p(·; θ)) .

• Specific prediction task (e.g. classification, segmentation): Learn a
prediction function

F (x ; θ) = arg max
y

p(y |x ; θ).

• The above two goals are both about parameter learning. There is another
type of learning called structure/knowledge discovery — learn the
structure of a graphical model (i.e. interaction between random variables).

PGM SS19 : IV : Learning Graphical Models 3

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

Maximum Likelihood Estimation

PGM SS19 : IV : Learning Graphical Models 4

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

Empirical Distribution and Maximum Likelihood
• In practice, the ground-truth distribution r is assessed via i.i.d. samples
S = {x1, x2, ..., xN} or S = {(x1, y1), (x2, y2), ..., (xN, yN)}.

• That is, r is replaced by an empirical distribution of the form

r(x) =
1
|S|
∑

x ′∈S
δx ′(x), or

r(x , y) =
1
|S|

∑

(x ′,y ′)∈S
δ(x ′,y ′)(x , y).

• Density estimation:

arg min
θ

KL (r | p(·; θ)) = arg min
θ

Ex∼r [log r(x)]− Ex∼r [log p(x ; θ)]

= arg min
θ
`(θ) := −Ex∼r [log p(x ; θ)] = − 1

|S|
∑

x∈S
log p(x ; θ).

We have derived the maximum likelihood estimation (MLE). The loss `(θ)
is called the negative log-likelihood (NLL) loss.

PGM SS19 : IV : Learning Graphical Models 5

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

MLE for Learning Bayesian Networks
• Let p be represented by a BN G = (V , E), i.e. p(x ; θ) =

∏
i∈V θi(xi|xPaG(i)),

with parameter θ satisfying θi(xi|xPaG(i)) ≥ 0 and
∑

xi
θi(xi|xPaG(i)) = 1.

• MLE for (fully observable) BN minimize the NLL loss `(θ) over θ:

min
θ
`(θ) = − 1

|S|
∑

x∈S
log p(x ; θ) = − 1

|S|
∑

x∈S

∑

i∈V
log θi(xi|xPaG(i))

= − 1
|S|
∑

x∈S

∑

i∈V

∑

x ′
{i}∪PaG(i)

log θi(x ′i |x ′PaG(i))1{x
′
{i}∪PaG(i) = x{i}∪PaG(i)}

= − 1
|S|
∑

i∈V

∑

x ′
{i}∪PaG(i)

log θi(x ′i |x ′PaG(i))
∑

x∈S
1{x ′{i}∪PaG(i) = x{i}∪PaG(i)}

=: − 1
|S|
∑

i∈V

∑

x ′
{i}∪PaG(i)

log θi(x ′i |x ′PaG(i))Ni(x ′i |x ′PaG(i)),

which has a close-form solution: θ∗i (x ′i |x ′PaG(i)
) =

Ni(x ′i |x ′PaG(i)
)

∑
x ′

i
Ni(x ′i |x ′PaG(i)

)
.

PGM SS19 : IV : Learning Graphical Models 6

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

Markov Random Field in Log-Linear Form
• Let p be represented by an MRF H = (V , E):

p(x ; η) =
1

Z (η)

∏

C∈Clique(H)
φC(xC; ηC),

Z (η) =
∑

x

∏

C∈Clique(H)
φC(xC; ηC).

• Reparameterize p in the log-linear form:

p(x ; η) =
1

Z (η)
exp

(∑

C∈Clique(H)

∑

x ′
C

1{xC = x ′C} logφC(x ′C; ηC)
)

=:
1

Z (θ)
exp(θ>ψ(x)) = p(x ; θ).

• ψ(x) is a vector whose entries are given by indicator functions 1{xC = x ′C};
θ is a vector whose entries are given by log-potentials logφC(x ′C; ηC).

• More generally, p(x ; θ) of the above form is a member of the exponential
family; ψ(x) is called the sufficient statistics; θ is the natural parameters.

PGM SS19 : IV : Learning Graphical Models 7

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

MLE for Learning MRFs

• Minimize the NLL loss `(θ) for p(x ; θ) =
1

Z (θ)
exp(θ>ψ(x)):

`(θ) = − 1
|S|
∑

x∈S
log p(x ; θ) = −θ>

(1
|S|
∑

x∈S
ψ(x)

)
+ log Z (θ),

log Z (θ) = log
∑

x

exp(θ>ψ(x)).

• There is no closed form for the optimal solution. Instead, we can derive the
gradient of `(θ) as:

∇θ log Z (θ) =
∑

x

exp(θ>ψ(x))∑
x ′ exp(θ>ψ(x ′))

ψ(x) = Ex∼p(·;θ)[ψ(x)],

∇θ `(θ) = Ex∼p(·;θ)[ψ(x)]− Ex∼r [ψ(x)],

where r(x) =
1
|S|
∑

x ′∈S δx ′(x) is the empirical distribution.

PGM SS19 : IV : Learning Graphical Models 8

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

MLE for Learning MRFs (cont’d)
• We can also derive

∇2
θ `(θ) = ∇2

θ log Z (θ)

= Ex∼p(·;θ)[ψ(x)ψ(x)>]− Ex∼p(·;θ)[ψ(x)]Ex∼p(·;θ)[ψ(x)]>

= Covx∼p(·;θ)[ψ(x)]. (positive semidefinite ∀θ)

This implies that the function `(θ) is convex in θ.

• Recall that ψ(x) contains sufficient statistics (or features). A vanishing
gradient of the NLL loss

∇θ `(θ) = Ex∼p(·;θ)[ψ(x)]− Ex∼r [ψ(x)] = 0

yields moment matching of ψ(x) between "model prediction" and "empirical
observation".

• MLE learning can be numerically carried out by gradient descent iterations:

θ ← θ − τ∇θ `(θ),

for properly chosen step size τ . Each iteration requires one (approximate)
probabilistic inference (e.g. via variational inference or sampling).

PGM SS19 : IV : Learning Graphical Models 9

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

Alternatives to Gradient-based Learning
• This lecture focuses on "gradient-based" MLE learning of MRFs/CRFs. It is

a general-purpose paradigm but can be computationally expensive.

• There exist various alternatives to gradient-based learning of MRFs
(typically effective under more restrictive settings), e.g.:

− Pseudo-likelihood [Murphy, Section 19.5.4].

− Iterative proportional fitting (IPF) [Murphy, Section 19.5.7].
19.5. Learning 679

Method Restriction Exact MLE? Section
Closed form Only Chordal MRF Exact Section 19.5.7.4
IPF Only Tabular / Gaussian MRF Exact Section 19.5.7
Gradient-based optimization Low tree width Exact Section 19.5.1
Max-margin training Only CRFs N/A Section 19.7
Pseudo-likelihood No hidden variables Approximate Section 19.5.4
Stochastic ML - Exact (up to MC error) Section 19.5.5
Contrastive divergence - Approximate Section 27.7.2.4
Minimum probability flow Can integrate out the hiddens Approximate Sohl-Dickstein et al. (2011)

Table 19.1 Some methods that can be used to compute approximate ML/ MAP parameter estimates for
MRFs/ CRFs. Low tree-width means that, in order for the method to be efficient, the graph must “tree-like”;
see Section 20.5 for details.

(a) (b)

Figure 19.13 (a) A small 2d lattice. (b) The representation used by pseudo likelihood. Solid nodes are
observed neighbors. Based on Figure 2.2 of (Carbonetto 2003).

In the case of Gaussian MRFs, PL is equivalent to ML (Besag 1975), but this is not true in general
(Liang and Jordan 2008).

The PL approach is illustrated in Figure 19.13 for a 2d grid. We learn to predict each node,
given all of its neighbors. This objective is generally fast to compute since each full conditional
p(yid|yi,−d, θ) only requires summing over the states of a single node, yid, in order to compute
the local normalization constant. The PL approach is similar to fitting each full conditional
separately (which is the method used to train dependency networks, discussed in Section 26.2.2),
except that the parameters are tied between adjacent nodes.

One problem with PL is that it is hard to apply to models with hidden variables (Parise and
Welling 2005). Another more subtle problem is that each node assumes that its neighbors have
known values. If node t ∈ nbr(s) is a perfect predictor for node s, then s will learn to rely
completely on node t, even at the expense of ignoring other potentially useful information, such
as its local evidence.

However, experiments in (Parise and Welling 2005; Hoefling and Tibshirani 2009) suggest that
PL works as well as exact ML for fully observed Ising models, and of course PL is much faster.

19.5.5 Stochastic maximum likelihood

Recall that the gradient of the log-likelihood for a fully observed MRF is given by

∇θℓ(θ) =
1

N

∑

i

[φ(yi) − E [φ(y)]] (19.51)

Figure: Alternatives to gradient-based learning [Murphy, Table 19.1].

PGM SS19 : IV : Learning Graphical Models 10

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

Learning CRFs via Conditional Log-Likelihood
• Consider the prediction function F for a specific prediction task:

F (x ; θ) = arg max
y

p(y |x ; θ),

where p(y |x ; θ) is modeled by a conditional random field (CRF):

p(y |x ; θ) =
1

Z (θ; x)
exp(θ>ψ(y ; x)).

• Learn the CRF via the conditional log-likelihood:

min
θ
`(θ) = − 1

|S|
∑

(x ,y)∈S
log p(y |x ; θ). (†)

• With rx the marginal distribution of r and r(·|x) the conditional distribution,
(†) can be interpreted as an extension of MLE:

min
θ

Ex∼rx [KL (r(·|x) | p(·|x ; θ))].

• Conditional log-likelihood learning of CRFs is widely used in supervised
learning for classification, segmentation, etc. Note that p(y |x ; θ) also
provides confidence of the prediction y(x) = arg maxy ′ p(y ′|x ; θ).

PGM SS19 : IV : Learning Graphical Models 11

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

Learning CRFs by Stochastic Gradient Descent
• Proceed similarly as in MLE for learning MRFs (letting Sx = {x1, ..., xN}):

`(θ) = −θ>
(1
|S|

∑

(x ,y)∈S
ψ(y ; x)

)
+

1
|S|
∑

x∈Sx

log Z (θ; x),

log Z (θ; x) = log
∑

y

exp(θ>ψ(y ; x)).

• The gradient and the Hessian of `(θ) can be derived as:

∇θ log Z (θ; x) =
∑

y

exp(θ>ψ(y ; x))∑
y ′ exp(θ>ψ(y ′; x))

ψ(y ; x) = Ey∼p(·|x ;θ)[ψ(y ; x)],

∇θ `(θ) = Ex∼rx [Ey∼p(·|x ;θ)[ψ(y ; x)]]− E(x ,y)∼r [ψ(y ; x)],

∇2
θ `(θ) = Ex∼rx [Covy∼p(·|x ;θ)[ψ(y ; x)]].

• Note the difference between learning CRFs and learning MRFs. Each
log Z (θ; x) and its gradient now depend on the data point x . For a large
dataset, we often approximate Ex∼rx [·] inside ∇θ `(θ) by sampling, leading to
a mini-batch stochastic gradient descent learning scheme.

PGM SS19 : IV : Learning Graphical Models 12

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

Further Reading

• Murphy, Sections 10.4, 19.5.

• Koller & Friedman, Chapters 16, 17, 20.

PGM SS19 : IV : Learning Graphical Models 13

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

Learning Latent Variable Models

PGM SS19 : IV : Learning Graphical Models 14

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

Latent Variable Models
• We have studied MLE for learning a fully observable BN/MRF/CRF.

However, full observability is not always the case in practice.

• A latent variable model (LVM) refers to a distribution p(x , z; θ) over two
sets of variables x , z, where x are observable from the dataset
S = {x1, x2, ..., xN} and z are the latent variables never being observed.

• As an example of LVM, a Gaussian mixture model (GMM) is defined by

p(z = k) = πk , (πk ≥ 0 ∀k ,
∑

k

πk = 1)

p(x |z = k) = pG(x ;µk ,Σk) = (2π)−
n
2 |Σk |−

1
2 exp

(
− 1

2
(x − µk)>Σ−1

k (x − µk)
)
,

p(x , z; {πk , µk ,Σk}) = p(z)p(x |z) =
∑

k

1{z = k}πkpG(x ;µk ,Σk).

Figure: Mixture of three Gaussians [Murphy, Figure 11.3]. Left: p(x |z); Right: p(x).
PGM SS19 : IV : Learning Graphical Models 15

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

MLE for Partially Observable MRFs
We extend gradient-based MLE learning to partially observable MRFs:

p(x , z; θ) =
1

Z (θ)
exp

(
θ>ψ(x , z)

)
,

Z (θ) =
∑

x ,z

exp
(
θ>ψ(x , z)

)
.

p(x ; θ) =
∑

z

p(x , z; θ) =
1

Z (θ)

∑

z

exp
(
θ>ψ(x , z)

)
,

`(θ) = − 1
|S|
∑

x∈S
log p(x ; θ) (arg min

θ
`(θ) MLE)

= − 1
|S|
∑

x∈S
log
∑

z

exp
(
θ>ψ(x , z)

)
+ log Z (θ).

∇θ `(θ) = − 1
|S|
∑

x∈S

∑

z

exp(θ>ψ(x , z))∑
z ′ exp(θ>ψ(x , z ′))

ψ(x , z) +∇θ log Z (θ)

= −Ex∼r [Ez∼p(·|x ;θ)[ψ(x , z)]] + E(x ,z)∼p(·,·|θ)[ψ(x , z)].

PGM SS19 : IV : Learning Graphical Models 16

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

MLE for Partially Observable CRFs
(x , y) : observable input/output variables; z : latent variables.

p(y , z|x ; θ) =
1

Z (θ; x)
exp

(
θ>ψ(y , z; x)

)
,

Z (θ; x) =
∑

y ,z

exp
(
θ>ψ(y , z; x)

)
.

p(y |x ; θ) =
∑

z

p(y , z|x ; θ) =
1

Z (θ; x)

∑

z

exp
(
θ>ψ(y , z; x)

)
,

`(θ) = − 1
|S|

∑

(x ,y)∈S
log p(y |x ; θ)

= − 1
|S|

∑

(x ,y)∈S
log
∑

z

exp
(
θ>ψ(y , z; x)

)
+

1
|S|
∑

x∈Sx

Z (θ; x).

∇θ `(θ) = − 1
|S|

∑

(x ,y)∈S

∑

z

exp(θ>ψ(y , z; x))∑
z ′ exp(θ>ψ(y , z ′; x))

ψ(y , z; x) +∇θ log Z (θ; x)

= −E(x ,y)∼r [Ez∼p(·|x ,y ;θ)[ψ(y , z; x)]] + Ex∼rx [E(y ,z)∼p(·,·|x ;θ)[ψ(y , z; x |θ)]].
PGM SS19 : IV : Learning Graphical Models 17

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

Expectation Maximization
Expectation maximization (EM) is an important algorithm for learning LVMs, by
exploiting the fact that MLE learning for fully observable models is much easier.

EM algorithm:

Require: dataset S = {x1, x2, ..., xN}, parameterized distribution p(x , z; θ).
Initialize θ0. Iterate t = 0, 1, 2, ... as follows:

1. (E-step) For each x ∈ S, compute

qt(z|x) := p(z|x ; θt).

2. (M-step) Compute

θt+1 := arg min
θ

̂̀t
(θ) = − 1

|S|
∑

x∈S

∑

z

qt(z|x) log p(x , z; θ).

Some remarks:
• Very often, p(z|x ; θt) in the E-step has a simple close-form expression.
• The M-step refers to (reweighted) MLE for a fully observable model.

PGM SS19 : IV : Learning Graphical Models 18

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

EM for Learning Gaussian Mixture Models
• As a classical example, EM can be applied to learning GMM:

θ = {πk , µk ,Σk},
p(x , z; θ) = p(z)p(x |z) =

∑

k

1{z = k}πkpG(x ;µk ,Σk).

• (E-step) ∀x ∈ S : qt(z = k |x) = p(z = k |x ; θt) =
πt

kpG(x ;µt
k ,Σt

k)∑
k ′ πt

k ′pG(x ;µt
k ′,Σt

k ′)
.

• (M-step)

θt+1 = arg min
θ

̂̀t(θ) := − 1
|S|
∑

x∈S

∑

z

qt(z|x) log p(x , z; θ)

= − 1
|S|
∑

x∈S

∑

k

qt(z = k |x)
(

log πk + log pG(x ;µk ,Σk)
)
.

⇒ πt+1
k =

1
|S|
∑

x∈S qt(z = k |x); As the solutions of MLE for Gaussians,

(µt+1
k ,Σt+1

k) also has a closed-form solution [Murphy, Section 11.4.2.3].

PGM SS19 : IV : Learning Graphical Models 19

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

EM for Learning Partially Observable BNs
• Let p be represented by BN G = (V ∪ H, E) with x = (xV , xH) for observable

variables xV and latent variables xH:

p(xV , xH; θ) =
∏

i∈V∪H
θi(xi|xPaG(i)).

• Denote the empirical observations by S = {x1
V , x

2
V , ..., x

N
V }.

• (E-step) ∀xV ∈ S : qt(xH|xV) := p(xH|xV ; θt).

• (M-step) θt+1 := arg minθ ̂̀
t
(θ) with

̂̀t
(θ) = − 1

|S|
∑

xV∈S

∑

xH

qt(xH|xV) log p(xV , xH; θ)

= − 1
|S|
∑

xV∈S

∑

xH

qt(xH|xV)
∑

i∈V∪H
log θi(xi|xPaG(i))

= − 1
|S|
∑

xV∈S

∑

xH

qt(xH|xV)
∑

i∈V∪H

∑

x ′
{i}∪PaG(i)

log θi(x ′i |x ′PaG(i))1{x
′
{i}∪PaG(i) = x{i}∪PaG(i)}

PGM SS19 : IV : Learning Graphical Models 20

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

EM for Learning Partially Observable BNs (cont’d)

... = − 1
|S|
∑

xV∈S

∑

xH

qt(xH|xV)
∑

i∈V∪H

∑

x ′
{i}∪PaG(i)

log θi(x ′i |x ′PaG(i))1{x
′
{i}∪PaG(i) = x{i}∪PaG(i)}

= − 1
|S|

∑

i∈V∪H

∑

x ′
{i}∪PaG(i)

log θi(x ′i |x ′PaG(i))
∑

xV∈S

∑

xH

qt(xH|xV)1{x ′{i}∪PaG(i) = x{i}∪PaG(i)}

=: − 1
|S|

∑

i∈V∪H

∑

x ′
{i}∪PaG(i)

log θi(x ′i |x ′PaG(i))Ni(x ′i |x ′PaG(i)).

• Hence, θt+1 := arg minθ ̂̀
t
(θ) has a closed-form solution:

θi(x ′i |x ′PaG(i)) =
Ni(x ′i |x ′PaG(i)

)
∑

x ′
i
Ni(x ′i |x ′PaG(i)

)
.

• In general, evaluation of qt(xH|xV), hence Ni(x ′i |x ′PaG(i)
), requires inference.

PGM SS19 : IV : Learning Graphical Models 21

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

Convergence Property of EM
• In the following, we study the convergence property of EM.

• Given the empirical distribution r and the model distribution p(x , z; θ):
(E-step) ∀x ∈ S : qt(z|x) = p(z|x ; θt).

(M-step) θt+1 = arg minθ ̂̀
t
(θ) := −Ex∼r [Ez∼qt(·|x)[log p(x , z|θ)]].

• We derive an upper bound for the NLL loss `(θ) by Jensen’s inequality:

`(θ) := −Ex∼r [log p(x ; θ)] = −Ex∼r

[
log
∑

z

p(x , z; θ)
]

= Ex∼r

[
− log

∑

z

q(z|x)
p(x , z; θ)

q(z|x)

]

(Jensen’s ineq.) ≤ Ex∼r

[
−
∑

z

q(z|x) log
p(x , z; θ)

q(z|x)

]

= Ex∼r [−Ez∼q(·|x)[log p(x , z; θ)]] + Ex∼r [Ez∼q(·|x)[log q(z|x)]].

The Jensen’s inequality holds for any q(·|x). It is tight if q(·|x) = p(·|x ; θ).

PGM SS19 : IV : Learning Graphical Models 22

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

Convergence Property of EM (cont’d)
• Given x and q(·|x), write the upper bound as

L(x ; q(·|x), θ) := −Ez∼q(·|x)
[

log
p(x , z; θ)

q(z|x)

]
= −Ez∼q(·|x)

[
log

p(z|x ; θ)p(x |θ)

q(z|x)

]

= −Ez∼q(·|x)
[

log
p(z|x ; θ)

q(z|x)

]
− Ez∼q(·|x)[log p(x |θ)]

= KL (q(·|x) | p(·|x ; θ))− log p(x |θ).

• E-step minimize L(x ; q(·|x), θ) over q(·|x) ⇔ q(·|x) = p(·|x ; θ).
M-step minimize Ex∼r [L(x ; q(·|x), θ)] over θ.
Altogether, EM performs alternating minimization on Ex∼r [L(x ; q(·|x), θ)].

• Overall, the NLL loss `(θt) in EM is monotonically decreasing:

`(θt+1) ≤ Ex∼r [L(x ; qt(·|x), θt+1)] (Jensen)
≤ Ex∼r [L(x ; qt(·|x), θt)] (M-step)
= `(θt). (E-step makes Jensen tight)

• In practice, EM typically converges to a local minimizer of the NLL loss.
PGM SS19 : IV : Learning Graphical Models 23

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

Further Reading

• Murphy, Sections 11.4, 19.5.

• Koller & Friedman, Chapter 19.

PGM SS19 : IV : Learning Graphical Models 24

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

Structured Support Vector Machine

PGM SS19 : IV : Learning Graphical Models 25

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

Structured Risk Minimization
• Let p(y |x ; θ) be modeled by a CRF, i.e., p(y |x ; θ) = 1

Z (θ;x) exp(θ>ψ(y ; x)).

• Consider the prediction function F :

F (x ; θ) = arg max
y

p(y |x ; θ) = arg max
y
θ>ψ(y ; x).

• Previously, we employed the maximum conditional log-likelihood estimation
to learn parameter θ (let S = {(x1, y1), ..., (xN, yN)}):

min
θ
− 1
|S|

∑

(x ,y)∈S
log p(y |x ; θ).

• We introduce another approach called the structured risk minimization:

min
θ

R(θ) +
1
|S|

∑

(x ,y)∈S
∆(y ,F (x ; θ)).

− ∆ is a loss such that ∆(y , y) = 0, ∆(y , y ′) ≥ 0 ∀y , y ′; e.g. the 0-1 loss
∆(y , y ′) = 1{y 6= y ′}.

− R is a convex regularizer on θ (to avoid overfitting); e.g. R(θ) = 1
2σ‖θ‖2.

PGM SS19 : IV : Learning Graphical Models 26

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

Structured Support Vector Machine
• Pros and cons of structured risk minimization:
(+) Directly minimizes the "expected loss" of interest.
(−) F (x ; θ) = arg maxy θ

>ψ(y ; x) provides no probabilistic interpretation of y .
(+) Evaluation of F (x ; θ) benefits from fast MAP inference.

(−∗) The loss ∆(y , ·) is discontinuous, hence difficult to optimize.

• Now we introduce structured support vector machine (SSVM):

min
θ
`SSVM(θ) := R(θ) +

1
|S|

∑

(x ,y)∈S
max

y ′
{∆(y , y ′) + θ>ψ(y ′; x)− θ>ψ(y ; x)}.

• SSVM provides a convex upper bound of the loss ∆:

∆(y ,F (x ; θ)) ≤ ∆(y ,F (x ; θ)) + θ>ψ(F (x ; θ); x)− θ>ψ(y ; x)

≤ max
y ′
{∆(y , y ′) + θ>ψ(y ′; x)− θ>ψ(y ; x)}.

The last expression is a convex function of θ because it is the pointwise
maximum of a set of affine (in particular convex) functions of θ.

PGM SS19 : IV : Learning Graphical Models 27

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

Connection to Classical SVM

• Naturally, SSVM can be specialized to classical SVM. Assume that

− Binary-valued y ∈ Y = {+1,−1});
− 0-1 loss ∆(y , y ′) = 1{y 6= y ′};
− Sufficient statistics ψ(y ; x) = 1

2yx .

• This implies binary linear SVM formulation:

F (x ; θ) = arg max
y
θ>ψ(y ; x) = sgn(θ>x).

∆(y , y ′) + θ>ψ(y ′; x)− θ>ψ(y ; x) =

{
0 if y = y ′,
1− yθ>x if y 6= y ′.

min
θ
`SVM(θ) := R(θ) +

1
|S|

∑

(x ,y)∈S
max{0, 1− yθ>x}︸ ︷︷ ︸

"hinge loss"

.

PGM SS19 : IV : Learning Graphical Models 28

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

Training SSVM by Subgradient Descent
Require: initial step size τ > 0, maximal iteration number T .

0. Initialize θ0 := 0.
for t ∈ {0, 1, 2, ...,T} do

for (x , y) ∈ S do
1. Compute ŷ t(x) := arg maxy ′ ∆(y , y ′) + (θt)>ψ(y ′; x).

end for
2. Compute δθt := ∇R(θt) + 1

|S|
∑

(x ,y)∈S
(
ψ(ŷ t(x); x)− ψ(y ; x)

)
.

3. Compute θt+1 := θt − τ
t+1δθ

t .

end for

Some remarks:
• Step 1 finds the active branch of maxy ′{∆(y , y ′) + (θt)>ψ(y ′; x)− θ>ψ(y ; x)}.
• In Step 2, δθt is a subgradient of the objective `SSVM at θt .
• For efficiency, S in Step 2 can be replaced by a random mini-batch of S.
• The scheduling of step sizes { τ

t+1}∞t=0 is standard for subgradient descent.

PGM SS19 : IV : Learning Graphical Models 29

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

Latent SSVM
• SSVM can be extended to learn partially observable CRFs. Consider

p(y , z|x ; θ) =
1

Z (θ; x)
exp

(
θ>ψ(y , z; x)

)
.

F (x ; θ) = arg max
y

(
max

z
p(y , z|x ; θ)

)
= arg max

y

(
max

z
θ>ψ(y , z; x)

)
.

• Latent SSVM:

min
θ
`l-SSVM(θ) := R(θ) +

1
|S|

∑

(x ,y)∈S

(
max

y ′
{∆(y , y ′) + max

z
θ>ψ(y ′, z; x)}

−max
z
θ>ψ(y , z; x)

)
.

• Different from SSVM, `l-SSVM(θ) is no longer convex in θ. In fact, it admits a
special structure called "difference of convex functions", i.e.,
`l-SSVM(θ) =: f (θ)− g(θ) for two convex functions f , g.

• Numerical optimization of `l-SSVM(θ) can be carried out by an algorithm called
concave-convex procedure (CCCP) [Murphy, Algorithm 19.5]. This algorithm
is another example of majorize-minimize algorithms (same for EM).

PGM SS19 : IV : Learning Graphical Models 30

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

Further Reading

• Murphy, Section 19.7.

• Nowozin & Lampert, Section 6.

PGM SS19 : IV : Learning Graphical Models 31

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich

	Maximum Likelihood Estimation
	Learning Latent Variable Models
	Structured Support Vector Machine

