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Goal of Learning

- Density estimation: Find p as "close" as possible to the ground-truth

distribution r, e.g., in terms of KL divergence (a.k.a. M-projection):

mein KL(r|p(-;0)).

- Specific prediction task (e.g. classification, segmentation): Learn a

prediction function

F(x;0) = argmaxp(y|x;0).
y

- The above two goals are both about parameter learning. There is another

type of learning called structure/knowledge discovery — learn the
structure of a graphical model (i.e. interaction between random variables).
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Maximum Likelihood Estimation
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Empirical Distribution and Maximum Likelihood
- In practice, the ground-truth distribution r is assessed via i.i.d. samples
S={x"x2 .. xNYorS={(x,y"), (x2,y?),..,(x", yN)}.
- That is, r is replaced by an empirical distribution of the form

Z 5)(/ or

X’GS
- Z 5(X,’y/)(X
(X".y')es

. Density estimation:
arg mein KL(r|p(-;0)) = arg min Ex-r[log r(x)] — Ex~[log p(x; 6)]

= arg mein U(0) = —Ex~r[log p(x; )] Z log p(x; 6).

We have derived the maximum likelihood estimation (MLE). The loss ¢(6)
Is called the negative log-likelihood (NLL) loss.
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MLE for Learning Bayesian Networks

- Let p be represented by a BN G = (V, &), i.e. p(x; 0) = | [;cy, 0i( Xi| Xpay
with parameter 6 satisfying 0;(xj|Xpag(7)) > 0 and » _, 0i(xi|Xpag(1)) = 1.

- MLE for (fully observable) BN ~~ minimize the NLL loss ¢(6) over 6:

m|n€ Zlogp (x;0) ZZIOQ@ (Xi| Xpag(i))

XGS XES 19%
_ S‘ Y Y log 6i(x (Xi 1XPag (i) 1{X [ UPag(i) = X{i}uPa(i) }
XES i€y x{,}UPa ()
Z Z log 0;(x |Xé>ag(/))z 1{X£i}UPag(i) = X{i}UPag(i)
ey X{/}UPa (7 X€S
Z D> 10g0i(x] | Xpag()) Ni(X] 1 Xpay )
1% x{,}uPa ()
( /’XI/Da ))

which has a close-form solution: 9;‘(x,-’|x§,ag(,))
D Ni(X [ Xpa, )
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Markov Random Field in Log-Linear Form

. Let p be represented by an MRF H = (V, £):

p(x;m:ZL [1 oobxcino)

(77) CeClique(H)

=> 11 Cbc(xc nc).

X CeClique(H

- Reparameterize p in the log-linear form:

plxin) = 5~ exp ( > 2 Mxe=xg}log éo(xg; nc))

Z(n) CeClique(H) x,

] T _ (v
. ¢(x) is a vector whose entries are given by indicator functions 1{x¢c = x;};
0 is a vector whose entries are given by log-potentials log ¢c(Xxs; 11¢)-

- More generally, p(x; #) of the above form is a member of the exponential

family; ¢(x) is called the sufficient statistics; ¢ is the natural parameters.
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MLE for Learning MRFs

- Minimize the NLL loss ¢(0) for p(x; 0) = % exp(f ' (x)):

_ |S|Zlogpx9 __€T<|S|Zw )+IogZ)

xes xes

log Z(6) =log ) _exp(6¢(x)).

- There is no closed form for the optimal solution. Instead, we can derive the
gradient of /(0) as

Volog Z(0 Z Zexgxg ;ﬁ w()))(,))w(x) Exp(:0)[¥(X)].

Vi £(0) = Exp(an[: ()] = Excr (X)),
1
S|

where r(x) = — > ,..s 0x(X) is the empirical distribution.
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MLE for Learning MRFs (cont'd)
- We can also derive
V5U(0) = V5log Z(0)
= Exp(:0) [0 ()Y () T = Exop( ) [ OO] Expiay [0 (X))
= CoVyp(-.0)[¥(X)]. (posmve semidefinite VH)
This implies that the function ¢(0) is convexin 6.

- Recall that /(x) contains sufficient statistics (or features). A vanishing
gradient of the NLL loss

Vo l(0) = Exp(-0) [ (X)] = Ex~r[tb(X)] = O

yields moment matching of 1(x) between "model prediction" and "empirical
observation".

- MLE learning can be numerically carried out by gradient descent iterations:
0« 0—1Vyl(0),

for properly chosen step size 7. Each iteration requires one (approximate)

probabilistic inference (e.g. via variational inference or sampling).
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Alternatives to Gradient-based Learning

- This lecture focuses on "gradient-based" MLE learning of MRFs/CRFs. It is
a general-purpose paradigm but can be computationally expensive.

- There exist various alternatives to gradient-based learning of MRFs
(typically effective under more restrictive settings), e.g.:

— Pseudo-likelihood [Murphy, Section 19.5.4].
— lterative proportional fitting (IPF) [Murphy, Section 19.5.7].

Method Restriction Exact MLE?

Closed form Only Chordal MRF Exact

IPF Only Tabular / Gaussian MRF Exact

Gradient-based optimization — Low tree width Exact

Max-margin training Only CRFs N/A

Pseudo-likelihood No hidden variables Approximate
Stochastic ML - Exact (up to MC error)
Contrastive divergence - Approximate
Minimum probability flow Can integrate out the hiddens  Approximate

Figure: Alternatives to gradient-based learning [Murphy, Table 19.1].
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Learning CRFs via Conditional Log-Likelihood

- Consider the prediction function F for a specific prediction task:
F(x;0) = argmaxp(y|x; ),
y

where p(y|x; 0) is modeled by a conditional random field (CRF):

0 — T (v
p(y|x;0) = Z(0: %) exp(6 ¢ (y; x)).
. Learn the CRF via the conditional log-likelihood:
, 1
min ((0) = —1g7 > logp(y|x; ). (1)
(x,y)eS

- With r, the marginal distribution of r and r(-|x) the conditional distribution,
(t) can be interpreted as an extension of MLE:
min B, [KL (r(-[x) [ p(-|x; 0))].
. Conditional log-likelihood learning of CRFs is widely used in supervised
learning for classification, segmentation, etc. Note that p(y|x; ¢) also

. . . 4. oo
provides confidence of the prediction y(x) = arg max, p(y’|x; #).
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Learning CRFs by Stochastic Gradient Descent
. Proceed similarly as in MLE for learning MRFs (letting S, = {x', ..., x"}):

’
(o) =—-0' log Z(6;
0= (1, 32, 09) + g 3 oo 2050
log Z(6; x) = log > _ exp( QTw(y; x)).
y
- The gradient and the Hessian of ¢(¢) can be derived as:

Vylog Z(6: x) Z zeX:xg( gﬁ(j(;))x))w(y; x) = Eyp( o[ (y: X)),

Vg l(0) = prx[]Epr (-|x:6) [(y: x)]] — IBZ(X,y)wr[@b(y; x)],
V5 (0) = Ex~r[CoVyp(1x0) [0 (y; X)]].

- Note the difference between learning CRFs and learning MRFs. Each
log Z(0; x) and its gradient now depend on the data point x. For a large
dataset, we often approximate E,., [-| inside V, ¢(#) by sampling, leading to
a mini-batch stochastic gradient descent learning scheme.
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Further Reading

- Murphy, Sections 10.4, 19.5.

- Koller & Friedman, Chapters 16, 17, 20.
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Learning Latent Variable Models
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Latent Variable Models

- We have studied MLE for learning a fully observable BN/MRF/CRF.
However, full observability is not always the case in practice.

- A latent variable model (LVM) refers to a distribution p(x, z; #) over two
sets of variables x, z, where x are observable from the dataset
S ={x",x2, ..., xN} and z are the latent variables never being observed.

- As an example of LVM, a Gaussian mixture model (GMM) is defined by

p(z = k) = mk, (mk > 0 VK, Zﬂkz 1)
k

p(x|z = k) = pa(X; p, k) = (2 )_glzk|_% exp ( - %(X — k) T (x — Mk))7

p(X, Zi {7k, bk, Xk ) = P(Z)p(X|2) = 21{Z—k}7kaG(X fics Xc)-

Figure: Mixture of three Gaussians [Murphy, Figure 11.3]. Left: p(x|z); Right: p(x).
PGM SS19: IV : Learning Graphical Models 15
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MLE for Partially Observable MRFs

We extend gradient-based MLE learning to partially observable MRFs:

p(x,z;0) = % exp (Qsz(x, z)),

= Z exp <9T¢(X, z)).
prz@ Zexp<9T¢x2)>

— _—é log p(x; 6) (arg min ((0) ~~ MLE)
= g e e (W(X ?)) +loa Z(0)
xeS$S

0 S R st

= —Exr[Ezep(|x0) [w(X, 2)|] + Egx.z)p(- ) [10(X, 2)]-

PGM SS19 : IV : Learning Graphical Models 16
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MLE for Partially Observable CRFs

(x, y) : observable input/output variables; z : latent variables.
1 T :

Z(Q, X) eXp <9 2p(y? Z, X))7

Z(0;x) = Z exp <<9T¢(y, z; x)).

Py, z|x;0) =

p(y|x;6) Zp y.2x6) = 55 ;X) E;exp (HTw(y, z; X)),

0(0) = —@ > log p(y|x; 0)
(x.y)eS

— |S| Z IogZeXp(QT y)zX)—l—|S|ZZ(9X

(x,y)eS xeSx

_ exp(0 "y (y, z; X)) _ _
0= 3 D Uy 0 vz

— x,y NI’[EZNP (-|x,y:0) [w(}/a Z, X)]] + ]EXNFX[]E(y,z)Np(-,-|x;0)[w(ya Z, X|9)]]

PGM SS19: IV : Learning Graphical Models 17
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Expectation Maximization

Expectation maximization (EM) is an important algorithm for learning LVMSs, by
exploiting the fact that MLE learning for fully observable models is much easier.

EM algorithm:

Require: dataset S = {x', x2, ..., x'}, parameterized distribution p(x, z; 0).
Initialize 6°. Iterate t = 0,1, 2, ... as follows:

1. (E-step) For each x € &, compute

q'(2|x) = p(z|x;6").
2. (M-step) Compute

o1 = arg m|n€ ZZq (z|x) log p(x, z; 6).

xeS z

Some remarks:
- Very often, p(z|x; ') in the E-step has a simple close-form expression.
- The M-step refers to (reweighted) MLE for a fully observable model.

PGM SS19 : IV : Learning Graphical Models 18
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EM for Learning Gaussian Mixture Models

- As a classical example, EM can be applied to learning GMM:

0 = {7Tk7:uk7 Zk}7

p(x,z:0) = p(2)p(x|z) = Y " 1{z = k}mxpa(X: 11k, Tk).
k
7TkpG(X ,Uk,zt)
D ok ThPG(X; g, Thr)

. (E-step) Vx € S : §'(z = k|x) = p(z = k|x; 0") =

. (M-step)

t+1

0 —argm@m = ZZq (z|x)log p(x, z; 0)
XES z

= |8| ZZCI Z = k|X)<|097Tk+ log pa(X; Hk,zk))
xe§S Kk
’
= 71 = — " _<q'(z = k|x); As the solutions of MLE for Gaussians,

(it ¥ also has a closed-form solution [Murphy, Section 11.4.2.3].
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EM for Learning Partially Observable BNs

- Let p be represented by BN G = (V U H, &) with x = (xy, x3) for observable
variables xyy and latent variables xy:

p(xy, X3; 0 H 0i(Xi| Xpag(i))
ieVUH

. Denote the empirical observations by S = {x}, x2, ..., X} }.
- (E-step) Vxv € S 1 q'(xu|xv) = p(xa|xv; 0).

. (M-step) o1 .= arg mingzt(e) with

qu XH|XV Ing(XV,X’H,H)

Xvés X

ZZC] (xnlxv) Y 10g 6i(Xi|Xpag(i))

xveS Xy ieVUH

Z Zq (X[ xv) Z Z 100 0i(Xj | Xpag (i) H X{iyUpag(i) = X(ijupag(i)}
xveS Xy I€VUH x|

{/}UPa @)
PGM SS19: IV : Learning Graphical Models 20
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EM for Learning Partially Observable BNs (cont'd)
qu (X2 | xv) Z Z log 0(x |XPa ){X{/}uPa() X{i}UPag(i)}

xVeS Xy ieVUH x!

{ituPag (i)
= ——= Z Z log 0i(x |XPag(i))Z Z Clt(XH|XV)1{X£/}uPag(i) = X[i}UPag(i)
/eVU”H X{/}uPa 0 XpES Xy
’
DD D L CENALCIT!
IEVUH X{I}Upa 0)

~t
. Hence, 0" := argminy ¢ (0) has a closed-form solution:

N/(Xi/|xll3ag(i))

ei(xi/‘xé’ag(/)) - > Ni(X',|X|é>a (')).
i ! g\

. In general, evaluation of g'(xy|xy), hence N,-(x,-’|x§,ag(i)), requires inference.
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Convergence Property of EM

- In the following, we study the convergence property of EM.

- Given the empirical distribution r and the model distribution p(x, z; 8):
(E-step) Vx € S : g'(z|x) = p(z|x; 6").
.t
(M-step) 071 = argming £ (0) := —Ex[E,q.0[log p(x, z|0)]].

- We derive an upper bound for the NLL loss ¢(6) by Jensen’s inequality:
00) == —E,[log p(x; 0)] = —Ey-, [ og ¥ p(x, z 9)}
V4

p(x, z;0)
— IE‘:x~r — log Z q Z|X q(z|x) }
| p(x, z;0)
’ ] < E ~ S I
(Jensen’sineq.) < [Ey., Zq z|x) 09 q(z|x) }

= EX,\,,[ Equ (-x) [|Og ,O(X, Z, (9)]] + EX,\,,[]EZNq(.‘X)“OQ Q(Z|X)]].
The Jensen’s inequality holds for any q(-|x). ltis tightif q(-|x) = p(:|x; 6).
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Convergence Property of EM (cont'd)

- Given x and q(-|x), write the upper bound as
p(x, z;0) p(z|x; 0)p(x|0)
= —E I
a(ebe) | = Eematn 1097 g
_ p(z|x0)1
= Ezwq(.‘x) [ log q(Z|X) } Ez~q(-|x)[log p(X’@)]
= KL(a(-1x) [ p(-|x; 0)) — log p(x|6).
. E-step ~» minimize L(x; q(-|x), ) over g(:|x) < q(-|x) = p(:|x; 0).
M-step ~~ minimize E,.,[L(x; q(-|x), 8)] over 6.
Altogether, EM performs alternating minimization on E,.,[L(x; q(:|x), 0)].
. Overall, the NLL loss /(#") in EM is monotonically decreasing:

L(x; q(-1x), 6) = ~F2_q(10| log

0(077) < ExrL(x: ¢'(-]x), 071)] (Jensen)
< Exr[L(X; q'(¢|X), 67)] (M-step)
= ((6Y). (E-step makes Jensen tight)

- In practice, EM typically converges to a local minimizer of the NLL loss.
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Further Reading

- Murphy, Sections 11.4, 19.5.

. Koller & Friedman, Chapter 19.
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Structured Support Vector Machine
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Structured Risk Minimization

-+ Let p(y|x; ) be modeled by a CRF, i.e., p(y|x; 0) = 7z exp(6 ' ¢(y; x)).
- Consider the prediction function F:

F(x;0) = argmax p(y|x; 0) = argmax 8 ' y(y; x).
y y

- Previously, we employed the maximum conditional log-likelihood estimation
to learn parameter 6 (let S = {(x", y'), ..., (x", yM)}):

)
min —— Z log p(y|x; ).

’ |S| (x,y)eS
- We introduce another approach called the structured risk minimization:

_ 1
min R(HHW > Ay, F(x;0)).
(x,y)eS

— Ais aloss such that A(y,y) =0, A(y,y’) > 0Vy,y’; e.g. the 0-1 loss

Aly,y") =Wy #y'}.
— Ris a convex regularizer on 6 (to avoid overfitting); e.g. R(6) = 5-||6]|>.
PGM SS19: IV : Learning Graphical Models 26
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Structured Support Vector Machine

- Pros and cons of structured risk minimization:
(+) Directly minimizes the "expected loss" of interest.
(—) F(x;60) =argmax, 6'u(y; x) provides no probabilistic interpretation of y.
(+) Evaluation of F(x; 6) benefits from fast MAP inference.
(—*) The loss A(y, -) is discontinuous, hence difficult to optimize.

- Now we introduce structured support vector machine (SSVM):
min (sswa(0) == R(O) + 7o Y max{A(y Y+ 0Ty x) — 0 (v x)}.
’ ’ ‘ (x.y)eS
- SSVM provides a convex upper bound of the loss A:
Ay, F(x;:0)) < Ay, F(x;0)) +0"(F(x;0); x) — 0" (y; )
< max{A(y,y') + 8"y x) — 0 d(y; x)}-
y/

The last expression is a convex function of # because it is the pointwise

maximum of a set of affine (in particular convex) functions of 6.
PGM SS19 : IV : Learning Graphical Models 27
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Connection to Classical SVM

. Naturally, SSVM can be specialized to classical SVM. Assume that

— Binary-valued y € Y = {+1,—1});

— 0-1loss A(y,y") = 1{y #y'};

— Sufficient statistics 1(y; x) = Zyx.
- This implies binary linear SVM formulation:

F(x;0) = argmax ' ¢(y; x) = sgn(6' x).
y
0 ify =y,
1—y0'x ify#£y.

’

min (svu(6) := R(6) + & Y max{0,1-y0'x}.
(x,y)eS "hing;erloss"

Aly,y) + 00y x) = 070y x) = {

PGM SS19: IV : Learning Graphical Models 28
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Training SSVM by Subgradient Descent

Require: initial step size 7 > 0, maximal iteration number T.
0. Initialize §° := 0.
fort € {0,1,2,..., T} do
for (x,y) € Sdo
1. Compute y!(x) := argmax, A(y, y') + (6") "4 (y'; x).
end for
2. Compute 60" := VR(0") + 15 X (x yyes (LY (%) x) = (¥ ).
3. Compute ™" := ' — L506".
end for

Some remarks:
. Step 1 finds the active branch of max,{A(y, y’) + (6") "w(y’; x) — 0" ¥(y; x)}.
. In Step 2, 40! is a subgradient of the objective ¢ssym at 0'.
- For efficiency, S in Step 2 can be replaced by a random mini-batch of S.
- The scheduling of step sizes {;5}{°, is standard for subgradient descent.
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Latent SSVM

- SSVM can be extended to learn partially observable CRFs. Consider

2(91; o0 (070.2%)

F(x;0) = argmax ( max p(y, z|x; 0)) = argmax ( max 6 "' ¢(y, z; x)).
y 4 y z

p(y,z|x;0) =

. Latent SSVM:

_ 1
mgln EI-SSVM(Q) = R(Q)

B / T U
1 ]8!(2 (mygx{A(y,y)+mZ&1X9 Wy, zi x)}

X,y)ES
— max 0 Yy, z; x)).

- Different from SSVM, /.ssym(€) is no longer convex in 6. In fact, it admits a
special structure called "difference of convex functions", i.e.,
l.ssvm(0) =: f(0) — g(0) for two convex functions f, g.

- Numerical optimization of ¢,.ssym(¢) can be carried out by an algorithm called
concave-convex procedure (CCCP) [Murphy, Algorithm 19.5]. This algorithm

is another example of majorize-minimize algorithms (same for EM).
PGM SS19: IV : Learning Graphical Models 30
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Further Reading

 Murphy, Section 19.7.

- Nowozin & Lampert, Section 6.
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