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Goal of Learning
So far in the lecture:
. Graphical Model Representation
- Inference on Graphical Models
~+ Learning Graphical Models

Goal of learning:

- Density estimation: Find p as "close" as possible to the ground-truth
distribution g (e.g. in terms of KL divergence, i.e., M-projection):

minKL (q|p(;6)).

. Specific prediction task (e.g. classification, segmentation): Learn a
prediction function F(x; #) := argmax, p(y|x; 0).

. Structure/Knowledge discovery: Learn the structure of a graphical model
(I.e. interaction between random variables).
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Maximum Likelihood Estimation

- In practice, the ground-truth distribution g is assessed via i.i.d. samples

{xV, x2,... xN}Yor {(xT,y"), (X2, y?), ..., (xN, y™M)}.

- That is, g is replaced by an empirical distribution of the form

- Density estimation:

. . X
argmin KL(q|p(-;0)) =arg min Exq { log p((])(( ;)}
= arg m@in —Exq[log p(x;0)] = arg mgin _L1S‘—| % log p(x; 0) =: £(0).

We have derived the maximum likelihood estimation (MLE). The loss ¢(0)
is called the negative log-likelihood (NLL) loss.
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MLE for Learning Bayesian Networks
- Let p be represented by a BN G = (V, £):
= H 0(XilXPag(i));
1%
with parameter 6 satisfying 0(xj|Xpa;(7)) > 0 and » . 0(xi[Xpa,(1)) = 1.
- MLE for (fully observable) BN ~~ minimize the NLL loss ¢(6) over 6:

min £(6) Zlogpx 0) ZZIOQ@ /[ Xpas(i

x’eS X’ES ey

:__S‘S‘ D> 109 0(xi|xpag(n) 1{X(iyrasti) = X{ijupag(i}

X’ES €V X{iyupag(i)

Z > 10g (x| Xpag; )(Z {X{iuPag(i) = X{i}upag(,-)}>,

i€V X{iyuPag(i) xX'eS
which has a close-form solution:
Zx’es1{x{i}UPag(') — %i}UPag(i)} B #(X Xpag( ))
2 xes 1XPag(i) = Xpay (i)} #(Xpag(i))
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Learning MRFs in Log-Linear Form

. Let p be represented by a MRF H = (V, £):

p(x;m:ZL [1 oobxcino)

(77) CeClique(H)

=> 11 Cbc(xc nc).

X CeClique(H

- Reparameterize p in the log-linear form:

plxin) = 5~ exp ( > 2 Mxe=xg}log éo(xg; nc))

Z(n) CeClique(H) x,

] T _ (v
. ¢(x) is a vector whose entries are given by indicator functions 1{x¢c = x;};
0 is a vector whose entries are given by log-energies log ¢c(x;; n¢).

- More generally, p(x; #) of the above form is a member of the exponential

family; ¢(x) is called the sufficient statistics; ¢ is the natural parameters.
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MLE for Learning Markov Random Fields

+ Minimize the NLL loss £(0) for p(x; 0) = 7z exp(0 " ¢(x)):

=15 Zlogp X;0) = —QT(’S‘ Zw ) + log Z(0),
XES
log Z(8) = log ) _exp(6 1(x)).

- There is no closed form for the optimal solution. Instead, we can derive the
gradient of /(0) as

VelogZ(0) = 3 50 ey ) = Bl 00l

Vo £(0) = Exp(0)[1(X)] = Ex~glto(X)],

where g(x) = W > ves Ox(X) is the empirical distribution.
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MLE for Learning Markov Random Fields (cont'd)
- We can also derive (exercise!)
V5U(0) = V5log Z(0)
= Exp(:0) [0 ()Y () T = Exop( ) [ OO] Expiay [0 (X))
= Covypal(X)] (=0 ).
This implies that the function ¢(0) is convexin 6.

- Recall that /(x) contains sufficient statistics (or features). A vanishing
gradient of the NLL loss

Vo £(0) = Exp(:0)[¥(X)] = Ex~qlt)(x)] = 0
implies moment matching of 1(x ) between model prediction and empirical
distribution.

- MLE learning can be numerically carried out by gradient descent iterations:
0« 0—1Vyl(0),

for properly chosen step size 7. Each iteration requires one (approximate)

probabilistic inference (e.g. via variational inference or sampling).
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Conditional Log-Likelihood for Learning CRFs

. Consider the prediction function in a specific prediction task:
F(x;0) = argmax p(y|x; ),
y

where p(y|x; 0) is modeled by a conditional random field (CRF):

0 — T (v
p(y|x;0) = Z(0: %) exp(6 ¢ (y; x)).
. Learn the CRF via the conditional log-likelihood:
, 1
min ((0) = —1g7 > logp(y|x; ). (1)
(x,y)eS

- With g, the marginal distribution of g and g(-|x) the conditional distribution,
(t) can be interpreted as an extension of MLE:

min Eyq [KL (q(-[x) | p(-|x; 0))]

- Conditional log-likelihood learning of CRFs is widely used in supervised
learning for classification, segmentation, etc. Note that p(y|x; ¢) also

[l [] . [l / .
provides confidence of the prediction y(x) = arg max, p(y’|x; ).
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Learning CRFs

- Proceed similarly as in MLE for learning MRFs (letting Sy = U(Xy csix}):
1
W) =-6" log Z(6;
)= (fg 2 vv0)+ 57 2 09 2(6:),

(x,y)eS xeSx
log Z(#; x) = log Z exp(8 ' ¥ (y; x)).
y
- The gradient and the Hessian of ¢(#) can be derived as:

Vylog Z(6; x) Z Zexfxg(ﬁg( ;( ))X))@D(y: X) = Eyplxo) [ (yi X)l,
Vi 5(9) — XNqX[Epr -|x;9)[¢(y; X)]] o E(X,y),\,q[@b(y; X)]>
Vg (0) = Equx[COVpr(-\x;e)W(y; x)]]

- Note the difference between learning CRFs and learning MRFs. Each
log Z(0; x) and its gradient now depend on the data point x. For a large
dataset, we have to approximate E,. 4[] inside V, £(¢) by sampling, leading
to a mini-batch stochastic gradient descent learning scheme.
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Further Reading

- Murphy, Sections 10.4, 19.5.

- Koller & Friedman, Chapters 16, 17, 20.
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