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Goal of Learning
So far in the lecture:

• Graphical Model Representation

• Inference on Graphical Models

 Learning Graphical Models

Goal of learning:

• Density estimation: Find p as "close" as possible to the ground-truth
distribution q (e.g. in terms of KL divergence, i.e., M-projection):

min
θ

KL (q | p(·; θ)) .

• Specific prediction task (e.g. classification, segmentation): Learn a
prediction function F (x ; θ) := arg maxy p(y |x ; θ).

• Structure/Knowledge discovery: Learn the structure of a graphical model
(i.e. interaction between random variables).
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Maximum Likelihood Estimation
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Empirical Distribution and Maximum Likelihood
• In practice, the ground-truth distribution q is assessed via i.i.d. samples
S = {x1, x2, ..., xN} or S = {(x1, y1), (x2, y2), ..., (xN, yN)}.

• That is, q is replaced by an empirical distribution of the form

q(x) =
1
|S|
∑
x ′∈S

δx ′(x), or

q(x , y) =
1
|S|

∑
(x ′,y ′)∈S

δ(x ′,y ′)(x , y).

• Density estimation:

arg min
θ

KL (q | p(·; θ)) = arg min
θ

Ex∼q

[
log

q(x)
p(x ; θ)

]
= arg min

θ
−Ex∼q[log p(x ; θ)] = arg min

θ
− 1
|S|
∑
x∈S

log p(x ; θ) =: `(θ).

We have derived the maximum likelihood estimation (MLE). The loss `(θ)
is called the negative log-likelihood (NLL) loss.
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MLE for Learning Bayesian Networks
• Let p be represented by a BN G = (V , E):

p(x ; θ) =
∏
i∈V

θ(xi|xPaG(i)),

with parameter θ satisfying θ(xi|xPaG(i)) ≥ 0 and
∑

xi
θ(xi|xPaG(i)) = 1.

• MLE for (fully observable) BN minimize the NLL loss `(θ) over θ:

min
θ
`(θ) = − 1

|S|
∑
x ′∈S

log p(x ′; θ) = − 1
|S|
∑
x ′∈S

∑
i∈V

log θ(x ′i |x ′PaG(i))

= − 1
|S|
∑
x ′∈S

∑
i∈V

∑
x{i}∪PaG(i)

log θ(xi|xPaG(i))1{x{i}∪PaG(i) = x ′{i}∪PaG(i)}

= − 1
|S|
∑
i∈V

∑
x{i}∪PaG(i)

log θ(xi|xPaG(i))
(∑

x ′∈S

1{x{i}∪PaG(i) = x ′{i}∪PaG(i)}
)
,

which has a close-form solution:

∀i ∈ V : θ∗(xi|xPaG(i)) =

∑
x ′∈S 1{x{i}∪PaG(i) = x ′{i}∪PaG(i)

}∑
x ′∈S 1{xPaG(i) = x ′PaG(i)

}
=

#(x ′i , x
′
PaG(i)

)

#(x ′PaG(i)
)
.
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Learning MRFs in Log-Linear Form
• Let p be represented by an MRF H = (V , E):

p(x ; η) =
1

Z (η)

∏
C∈Clique(H)

φC(xC; ηC),

Z (η) =
∑

x

∏
C∈Clique(H)

φC(xC; ηC).

• Reparameterize p in the log-linear form:

p(x ; η) =
1

Z (η)
exp

( ∑
C∈Clique(H)

∑
x ′

C

1{xC = x ′C} logφC(x ′C; ηC)
)

=:
1

Z (θ)
exp(θ>ψ(x)) = p(x ; θ).

• ψ(x) is a vector whose entries are given by indicator functions 1{xC = x ′C};
θ is a vector whose entries are given by log-energies logφC(x ′C; ηC).

• More generally, p(x ; θ) of the above form is a member of the exponential
family; ψ(x) is called the sufficient statistics; θ is the natural parameters.
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MLE for Learning Markov Random Fields
• Minimize the NLL loss `(θ) for p(x ; θ) = 1

Z (θ) exp(θ>ψ(x)):

`(θ) = − 1
|S|
∑
x∈S

log p(x ; θ) = −θ>
( 1
|S|
∑
x∈S

ψ(x)
)
+ log Z (θ),

log Z (θ) = log
∑

x

exp(θ>ψ(x)).

• There is no closed form for the optimal solution. Instead, we can derive the
gradient of `(θ) as:

∇θ log Z (θ) =
∑

x

exp(θ>ψ(x))∑
x ′ exp(θ>ψ(x ′))

ψ(x) = Ex∼p(·;θ)[ψ(x)],

∇θ `(θ) = Ex∼p(·;θ)[ψ(x)]− Ex∼q[ψ(x)],

where q(x) = 1
|S|
∑

x ′∈S δx ′(x) is the empirical distribution.

PGM SS19 : IV : Learning Graphical Models 7

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich



MLE for Learning Markov Random Fields (cont’d)
• We can also derive (exercise!)

∇2
θ `(θ) = ∇2

θ log Z (θ)

= Ex∼p(·;θ)[ψ(x)ψ(x)
>]− Ex∼p(·;θ)[ψ(x)]Ex∼p(·;θ)[ψ(x)]

>

= Covx∼p(·;θ)[ψ(x)] (≥ 0 ∀θ).
This implies that the function `(θ) is convex in θ.

• Recall that ψ(x) contains sufficient statistics (or features). A vanishing
gradient of the NLL loss

∇θ `(θ) = Ex∼p(·;θ)[ψ(x)]− Ex∼q[ψ(x)] = 0

implies moment matching of ψ(x) between model prediction and empirical
distribution.

• MLE learning can be numerically carried out by gradient descent iterations:

θ ← θ − τ∇θ `(θ),

for properly chosen step size τ . Each iteration requires one (approximate)
probabilistic inference (e.g. via variational inference or sampling).
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Conditional Log-Likelihood for Learning CRFs
• Consider the prediction function in a specific prediction task:

F (x ; θ) = arg max
y

p(y |x ; θ),

where p(y |x ; θ) is modeled by a conditional random field (CRF):

p(y |x ; θ) = 1
Z (θ; x)

exp(θ>ψ(y ; x)).

• Learn the CRF via the conditional log-likelihood:

min
θ
`(θ) = − 1

|S|
∑

(x ,y)∈S

log p(y |x ; θ). (†)

• With qx the marginal distribution of q and q(·|x) the conditional distribution,
(†) can be interpreted as an extension of MLE:

min
θ

Ex∼qx [KL (q(·|x) | p(·|x ; θ))].

• Conditional log-likelihood learning of CRFs is widely used in supervised
learning for classification, segmentation, etc. Note that p(y |x ; θ) also
provides confidence of the prediction y(x) = arg maxy ′ p(y ′|x ; θ).
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Learning CRFs
• Proceed similarly as in MLE for learning MRFs (letting Sx =

⋃
(x ,y)∈S{x}):

`(θ) = −θ>
( 1
|S|

∑
(x ,y)∈S

ψ(y ; x)
)
+

1
|S|
∑
x∈Sx

log Z (θ; x),

log Z (θ; x) = log
∑

y

exp(θ>ψ(y ; x)).

• The gradient and the Hessian of `(θ) can be derived as:

∇θ log Z (θ; x) =
∑

y

exp(θ>ψ(y ; x))∑
y ′ exp(θ>ψ(y ′; x))

ψ(y ; x) = Ey∼p(·|x ;θ)[ψ(y ; x)],

∇θ `(θ) = Ex∼qx [Ey∼p(·|x ;θ)[ψ(y ; x)]]− E(x ,y)∼q[ψ(y ; x)],
∇2
θ `(θ) = Ex∼qx [Covy∼p(·|x ;θ)[ψ(y ; x)]].

• Note the difference between learning CRFs and learning MRFs. Each
log Z (θ; x) and its gradient now depend on the data point x . For a large
dataset, we have to approximate Ex∼qx [·] inside ∇θ `(θ) by sampling, leading
to a mini-batch stochastic gradient descent learning scheme.
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Further Reading

• Murphy, Sections 10.4, 19.5.

• Koller & Friedman, Chapters 16, 17, 20.
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