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Mixing time of MCMC

“Burn-in" phase

It takes time for the MCMC process to converge to the stationary
distribution. This transitional phase is called the “burn-in” phase and its
duration is called the mixing time.
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Mixing time of MCMC

“Burn-in" phase

It takes time for the MCMC process to converge to the stationary
distribution. This transitional phase is called the “burn-in” phase and its
duration is called the mixing time.

How to determine the mixing time?

Bad news: hard to determine in general!
@ One of the issue when using MCMC inference;
o High if well separated modes exists.

More on this subject: Markov Chains and Mixing Times, Levin et al.
https://pages.uoregon.edu/dlevin/MARKOV/mcmt2e. pdf
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Autocorrelation of samples

MCMC samples are not i.i.d.!
The sequence of samples generated from an MCMC process will not be
i.i.d.: in fact, neighboring samples follow the conditional distribution

specified by the transition kernel.
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Reducing the autocorrelation with thinning

A practical approach to reduce autocorrelation between generated samples
is to perform thinning, i.e. use only every k-th sample.
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Choice of g for Metropolis-Hastings

Admissible proposal distribution

The proposal distribution g is admissible (or valid) if its support include
that of the target distribution p*:

supp(p*) C Uxsupp(q(-|x)) (1)
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Choice of g for Metropolis-Hastings

Admissible proposal distribution

The proposal distribution g is admissible (or valid) if its support include
that of the target distribution p*:

supp(p*) C Uxsupp(q(-|x)) (1)

Choice of proposal distribution

Of course, it should be valid!
common choice: Gaussian distribution

Effect of variance:

@ Too high: high rejection rate = rarely changes state, “sticky”;

@ Too low: short-move random walk = stuck at isolated mode.
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Blocking Gibbs sampling

Gibbs sampling uses coordinate-wise update = highly correlated samples
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Blocking Gibbs sampling

Gibbs sampling uses coordinate-wise update = highly correlated samples

Checkerboard pattern for grid structure

For CV applications, we often encounter grid-shaped graphical models. A
classic blocking design is to use the checkerboard pattern.

@ nodes in a block are conditionally independent given nodes in the
other block!
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“From Wikipedia: https://en.wikipedia.org/wiki/Checkerboard
accessed on June 25th, 2019
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