Probabilistic Graphical Models in Computer Vision

Lecture: Dr. Tao Wu

Exercises: Yuesong Shen, Zhenzhang Ye
Summer Semester 2019

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 0

Room: 02.09.023 Wednesday, 08.05.2019, 12:15 - 14:00

The theory part was **NOT** covered yet in this Monday's lecture. You can look them after the lecture on 06.05.

This exercise sheet aims to give a warm-up on probabilistic theory and programing in python. Doing it is optional but we highly recommend you to go through all the exercises.

This sheet will **NOT** be counted into the exam bonus and you do **NOT** need to submit.

We will discuss all of them on 08.05.

Intro to Probability

Exercise 1 (0 points). Consider an experiment: throwing two fair dices:

- 1. What is the sample space Ω ?
- 2. Give an example of an event in this case.
- 3. Calculate the probability of the event you give.

Assume we have two events A and B from a sample space Ω , we introduce some notations:

- 1. $A \setminus B$: A occurs and B does NOT.
- 2. \bar{A} : A does NOT occur, i.e. $\bar{A} = \Omega \backslash A$.
- 3. $A \cup B$: either A or B occur.
- 4. $A \cap B$: both A and B occur.

Exercise 2 (0 points). Consider the same experiment: throwing two fair dices and find two events A and B so that following conditions are satisfied at the same time:

1.
$$P(A \backslash B) = P(A)$$

$$2. \ P(\bar{A}) = P(B)$$

3.
$$P(A \cup B) = 1$$

4. $P(A \cap B) = 0$.

Exercise 3 (0 Points). Show following properties:

- 1. $P(\emptyset) = 0$.
- 2. $A \subset B \Rightarrow P(A) \leq P(B)$.
- 3. $P(A \cap B) \le \min(P(A), P(B))$.
- 4. $P(A \cup B) \le P(A) + P(B)$.
- 5. $P(\Omega \backslash A) = 1 P(A)$.
- 6. If $(A_i)_{i\in\mathbb{N}} \in \mathscr{F}$ is set of pairwise disjoint events s.t. $\bigcup_{i\in\mathbb{N}} A_i = \Omega$, then $\sum_{i\in\mathbb{N}} P(A_i) = 1$.

Exercise 4 (0 Points). Show following properties about expectation and variance:

- 1. $\mathbb{E}[a] = a, \forall a \text{ is a constant.}$
- 2. $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$.
- 3. $\mathbb{E}[\alpha X] = \alpha \mathbb{E}[X]$, α is a constant scalar.
- 4. Cov[X, a] = Cov[a, X] = 0, for any constant a.
- 5. $Cov[\alpha X, \beta Y] = \alpha \beta Cov[X, Y]$. $(\alpha, \beta \text{ are constant scalars})$

Intro to Python

Please see *python_basics_template.ipynb* for details. In case you have any problems about installing notebook, please check https://jupyter.org/install.