Lecture: Dr. Tao Wu
Exercises: Yuesong Shen, Zhenzhang Ye
Summer Semester 2019

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 2

Room: 02.09.023
Wednesday, 22.05.2019, 12:15-14:00

Bayesian Network

(12+6 Points)
Exercise 1 (4 Points). Given two boolean random variables X and Y, (i.e. each can only be true (1) or false (0)). Show that if $X=0$ is independent to $Y=0$, we have X and Y are independent.

Exercise 2 (4 Points). In the following Bayesian network:

1. Give the factorization of $p\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$.
2. Assume the observation is $\left\{X_{4}\right\}$, give reachable nodes of $\left\{X_{0}\right\}$ via active trail.
3. Assume the observation is $\left\{X_{0}\right\}$, give reachable nodes of $\left\{X_{2}\right\}$ via active trail.

Exercise 3 (4 Points). Given three boolean random variables X, Y and Z, is it possible to find a perfect map for following distribution:

$$
p(x, y, z)= \begin{cases}\frac{1}{12} & x \oplus y \oplus z=\text { false } \tag{1}\\ \frac{1}{6} & x \oplus y \oplus z=\text { true }\end{cases}
$$

where \oplus is the XOR function. Explain why or draw the corresponding perct map.

Exercise 4 (6 Points). For a directed graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, assume that the max indegree is 2 (i.e. any node has maximum 2 parents). Given an observation set Z and a random variable Y, figure out an algorithm to find the reachable nodes of Y via active trail in this graph.
Hint: First of all, assume there is no v-structure in the graph, what should we do? Then include the v-structure, what kind of preprocessing do we have to do?

Programming (Due:27.05)

Exercise 5. In this programmming exericse, you are asked to implement an algorithm to find reachable nodes via active trail in a directed graph. See the ipython file for more details.

