Lecture: Dr. Tao Wu
Exercises: Yuesong Shen, Zhenzhang Ye
Summer Semester 2019

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 3

Room: 02.09.023
Wednesday, 29.05.2019, 12:15-14:00

Markov Random Field

(12+6 Points)
Exercise 1 (6 Points). Given two Bayesian network graph G_{1} and G_{2}, explain following statements for G_{1} and G_{2} are I-equivalent.

1. " G_{1} and G_{2} has the same skeleton" is a necessary but not sufficient condition.
2. " G_{1} and G_{2} has the same skeleton and same v-structure" is a sufficient but not necessary condition.

Figure 1: circle graph

Exercise 2 (6 Points). In this problem, we consider a distribution which is not strictly positive and it can not be factorized by a MRF.
Assume we have four binary random variables $X_{i}, i \in\{1,2,3,4\}$. The probability distribution assigns a probability $1 / 8$ uniformly to each of the following set of values $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$:

$$
\begin{array}{llll}
(0,0,0,0) & (1,0,0,0) & (1,1,0,0) & (1,1,1,0) \\
(0,0,0,1) & (0,0,1,1) & (0,1,1,1) & (1,1,1,1)
\end{array}
$$

and assigns zero to all other configurations of $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$.

1. We first show that $p\left(X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}, X_{4}=x_{4}\right)=p\left(X_{1}=x_{4}, X_{2}=\right.$ $\left.x_{3}, X_{3}=x_{2}, X_{4}=x_{1}\right)$.
2. Show that the distribution satisfies the global independencies with respect to the circle graph.
Hint: show that whatever pair of values for $\left\{X_{2}, X_{4}\right\}$, the value of X_{1} or X_{3} is known. Then use the conclusion from previous sub problem.
3. Show that we cannot find any factorization for $p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$.

Hint: Try to find a contradiction by examing all $\phi_{i j}\left(x_{i}, x_{j}\right)$ with (i, j) are the edges in circle graph.

Exercise 3 (6 Points). Let G be a factor graph for a Markov random field consisting of N^{2} binary variables, representing the pixels of an $N \times N$ image. For each piexel there is unary potential, and there are pairwise potentials according to the 8 -connected neighborhood.

1. Draw the factor graph for $N=3$.
2. What is the total number of factors, depending on N, that are included in this model.
