Probabilistic Graphical Models in Computer Vision

Lecture: Dr. Tao Wu Exercises: Yuesong Shen, Zhenzhang Ye Summer Semester 2019 Computer Vision Group Institut für Informatik Technische Universität München

Weekly Exercises 4

Room: 02.09.023 Wednesday, 05.06.2019, 12:15 - 14:00

Markov Random Field

(12+6 Points)

Exercise 1 (4 Points). Firstly, draw one possible factor graph for each Markovf Random Fields shown as following. Then write the corresponding factorization and independence of following 4 Markov Random Fields:

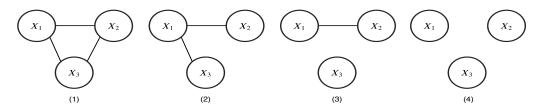


Figure 1: Exercise 1

Exercise 2 (4 Points). Consider following directed chain of 4 random variables, each variable can take *n* number of values. Assume we want to evaluate the probability that X_4 takes on value x_4 , *i.e.* $P(X_4 = x_4)$.

- 1. If we use straightforward probabilistic description, how many entries are required for a full joint probability table regarding n? How many operations are required ragarding n? (Use Big O notation).
- 2. Write down the factorization of $P(x_1, x_2, x_3, x_4)$ and explain how we can use it to simplify the computation.
- 3. How many operations do we need now regarding n? (Use Big O notation).

Exercise 3 (4 Points). Using the same idea from previous exercise, consider following problem, assume each variable has n number of values:

1. Using variable elimination with the order x_1, x_2, x_4, x_3 to compute $P(x_5)$. How many operations do we need regarding n?

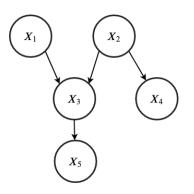


Figure 2: Exercise 3

2. What if we eliminate with the order x_3, x_1, x_2, x_4 to compute $P(x_5)$? How many operations do we need reagarding n?

Exercise 4 (6 Points). Here we use a simple factor graph to practice Belief Propagation. Consider following factor graph: assume designate node x_3 as the root, use

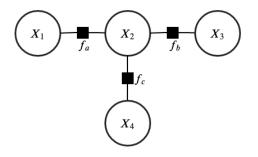


Figure 3: Exercise 4

the Belief Propagation to verify $\tilde{P}(x_2) \propto \sum_{x_1,x_3,x_4} \tilde{P}(x_1,x_2,x_3,x_4)$, where \tilde{P} is the unnormalized probability.