Probabilistic Graphical Models in Computer Vision

Lecture: Dr. Tao Wu
Exercises: Yuesong Shen, Zhenzhang Ye
Summer Semester 2019

Computer Vision Group
Institut für Informatik
Technische Universität München

## Weekly Exercises 0

Room: 02.09.023
Wednesday, 08.05.2019, 12:15-14:00
The theory part was NOT covered yet in this Monday's lecture. You can look them after the lecture on 06.05.
This exercise sheet aims to give a warm-up on probabilistic theory and programing in python. Doing it is optional but we highly recommend you to go through all the exercises.
This sheet will NOT be counted into the exam bonus and you do NOT need to submit.
We will discuss all of them on 08.05 .

## Intro to Probability

Exercise 1 (0 points). Consider an experiment: throwing two fair dices:

1. What is the sample space $\Omega$ ?
2. Give an example of an event in this case.
3. Calculate the probability of the event you give.

Solution. 1. $\Omega=\{(i, j): 1 \leq i, j \leq 6\}$.
2. $A=\{(i, j): i+j=11\}$.
3. $P(A)=\frac{|A|}{|\Omega|}=\frac{2}{36}$.

Assume we have two events $A$ and $B$ from a sample space $\Omega$, we introduce some notations:

1. $A \backslash B$ : $A$ occurs and $B$ does NOT.
2. $\bar{A}: A$ does NOT occur, i.e. $\bar{A}=\Omega \backslash A$.
3. $A \cup B$ : either $A$ or $B$ occur.
4. $A \cap B$ : both $A$ and $B$ occur.

Exercise 2 ( 0 points). Consider the same experiment: throwing two fair dices and find two events $A$ and $B$ so that following conditions are satisfied at the same time:

1. $P(A \backslash B)=P(A)$
2. $P(\bar{A})=P(B)$
3. $P(A \cup B)=1$
4. $P(A \cap B)=0$.

Solution. We can choose $A=\{(i, j): i+j$ is even $\}, B=\{(i, j): i+j$ is odd $\}$.
Exercise 3 ( 0 Points). Show following properties:

1. $P(\emptyset)=0$.
2. $A \subset B \Rightarrow P(A) \leq P(B)$.
3. $P(A \cap B) \leq \min (P(A), P(B))$.
4. $P(A \cup B) \leq P(A)+P(B)$.
5. $P(\Omega \backslash A)=1-P(A)$.
6. If $\left(A_{i}\right)_{i \in \mathbb{N}} \in \mathscr{F}$ is set of pairwise disjoint events s.t. $\bigcup_{i \in \mathbb{N}} A_{i}=\Omega$, then $\sum_{i \in \mathbb{N}} P\left(A_{i}\right)=1$.

Solution. 1. Since $\emptyset$ and $\Omega$ are pairwise disjoint, $P(\Omega)=P(\Omega \cup \emptyset)=P(\emptyset)+$ $P(\Omega)=1$. Therefore, $P(\emptyset)$ can only be 0 .
2. Since $A$ and $\bar{A} \cap B$ are disjoint, we have $P(B)=P(A \cup(\bar{A} \cap B))=P(A)+$ $P(\bar{A} \cap B) \geq P(A)$.
3. Since $(A \cap B) \subset A$ and $(A \cap B) \subset B$, using previous conclusion, we get $P(A \cap B) \leq \min (P(A), P(B))$.
4. Still $A$ and $(\overline{A \cap B} \cap B)$ are pairwise disjoint and $\overline{A \cap B} \cap B \subset B, P(A \cup B)=$ $P(A)+P(\overline{A \cap B} \cap B) \leq P(A)+P(B)$.
5. $P(\Omega \backslash A)=P(\bar{A})=P(\Omega)-P(A)=1-P(A)$.
6. $P(\Omega)=P\left(\bigcup_{i \in \mathbb{N}} A_{i}\right)=\sum_{i \in \mathbb{N}} P\left(A_{i}\right)=1$

Exercise 4 ( 0 Points). Show following properties about expectation and variance:

1. $\mathbb{E}[a]=a, \forall a$ is a constant.
2. $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$.
3. $\mathbb{E}[\alpha X]=\alpha \mathbb{E}[X], \alpha$ is a constant scalar.
4. $\operatorname{Cov}[X, a]=\operatorname{Cov}[a, X]=0$, for any constant a.
5. $\operatorname{Cov}[\alpha X, \beta Y]=\alpha \beta \operatorname{Cov}[X, Y] .(\alpha, \beta$ are constant scalars $)$

Solution. 1. We can view this as $P(X=a)=1$. Therefore, $\mathbb{E}[a]=a$ by definition.
2. We here show the discrete case, the continuous one can be deduced in the same way.

$$
\begin{aligned}
\mathbb{E}[X+Y] & =\sum_{\omega_{X} \in \Omega_{X}} \sum_{\omega_{Y} \in \Omega_{Y}}\left(X\left(\omega_{X}\right)+Y\left(\omega_{Y}\right)\right) P\left(\omega_{X}, \omega_{Y}\right) \\
& =\sum_{\omega_{X} \in \Omega_{X}} \sum_{\omega_{Y} \in \Omega_{Y}} X\left(\omega_{X}\right) P\left(\omega_{X}, \omega_{Y}\right)+\sum_{\omega_{X} \in \Omega_{X}} \sum_{\omega_{Y} \in \Omega_{Y}} Y\left(\omega_{Y}\right) P\left(\omega_{X}, \omega_{Y}\right) \\
& =\sum_{\omega_{X} \in \Omega_{X}} X\left(\omega_{X}\right) \sum_{\omega_{Y} \in \Omega_{Y}} P\left(\omega_{X} \mid \omega_{Y}\right) P\left(\omega_{Y}\right)+\sum_{\omega_{Y} \in \Omega_{Y}} Y\left(\omega_{Y}\right) \sum_{\omega_{X} \in \Omega_{X}} P\left(\omega_{Y} \mid \omega_{X}\right) P\left(\omega_{X}\right) \\
& =\mathbb{E}[X]+\mathbb{E}[Y]
\end{aligned}
$$

3. $\mathbb{E}[\alpha X]=\sum_{\omega \in \Omega} \alpha X(\omega) P(\omega)=\alpha \sum_{\omega \in \Omega} X(\omega) P(\omega)=\alpha \mathbb{E}[X]$.
4. $\operatorname{Cov}[X, a]=\mathbb{E}[a X]-\mathbb{E}[X] \mathbb{E}[a]=0 . \operatorname{Cov}[a, X]=\mathbb{E}[a X]-\mathbb{E}[a] \mathbb{E}[X]=0$.
5. $\operatorname{Cov}[\alpha X, \beta Y]=\mathbb{E}[\alpha \beta X Y]-\mathbb{E}[\alpha X] \mathbb{E}[\beta Y]=\alpha \beta(\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y])=\alpha \beta \operatorname{Cov}[X, Y]$.

## Intro to Python

Please see python_basics_template.ipynb for details. In case you have any problems about installing notebook, please check https://jupyter.org/install.

