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Exact Inference (12+6 Points)
Exercise 1 (4 Points). Firstly, draw one possible factor graph for each Markovf
Random Fields shown as following. Then write the corresponding factorization and
independence of following 4 Markov Random Fields:
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Figure 1: Exercise 1

Solution. Actually, each MRF has several factor graphs. Here we show one possible
factor graph for each. The corresponding factor graphs are:
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Figure 2: Exercise 2

1. Factorization: φ(x1,x2,x3)∑
x(x1,x2,x3)

. Independence: None.

2. Factorization: φ(x1,x2)φ(x2,x3)∑
x φ(x1,x2)φ(x2,x3)

. Independence: X2 ⊥ X3|X1.

3. Factorization: φ(x1,x2)φ(x3)∑
x φ(x1,x2)φ(x3)

. Independence: X3 ⊥ (X1, X2).

4. Factorization: φ(x1)φ(x2)φ(x3)∑
x φ(x1)φ(x2)φ(x3)

. Independence: pairwise independent.
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Exercise 2 (4 Points). Consider following directed chain of 4 random variables, each
variable can take n number of values. Assume we want to evaluate the probability
that X4 takes on value x4, i.e. P (X4 = x4).

1. If we use straightforward probabilistic description, how many entries are re-
quired for a full joint probability table regarding n? How many operations are
required ragarding n? (Use Big O notation).

2. Write down the factorization of P (x1, x2, x3, x4) and explain how we can use
it to simplify the computation.

3. How many operations do we need now regarding n? (Use Big O notation).

Solution. We first write down the formula for computing P (X4):

P (x4) =
∑

x1,x2,x3

P (x1, x2, x3, x4) (1)

1. If we write down the table directly, each variable has n number of values
and we have 4 variables. The table will be n4. To commpute the marginal
distribution, we need to sum over other 3 variables, which involves O(n3)
addition operations.

2. P (x1, x2, x3, x4) = P (x1)P (x2|x1)P (x3|x2)P (x4|x3). Now we plug it into above
equation:

P (x4) =
∑

x1,x2,x3

P (x1)P (x2|x1)P (x3|x2)P (x4|x3)

=
∑
x2,x3

P (x3|x2)P (x4|x3)
∑
x1

P (x1)P (x2|x1)

=
∑
x2,x3

P (x2)P (x3|x2)P (x4|x3)

=
∑
x3

P (x3)P (x4|x3)

3. The operations are O(n2) now. Because for each variable, we need to marginal-
ized it by considering the node and its child.

Exercise 3 (4 Points). Using the same idea from previous exercise, consider follow-
ing problem, assume each variable has n number of values:

1. Using variable elimination with the order x1, x2, x4, x3 to compute P (x5). How
many operations do we need regarding n?

2. What if we eliminate with the order x3, x1, x2, x4 to compute P (x5)? How
many operations do we need reagarding n?

2



Figure 3: Exercise 3

Solution. To compute the marginal distribution of x5 and consider the graph, we
have :

p(x5) =
∑

x1,x2,x3,x4

p(x1, x2, x3, x4, x5) =
∑

x1,x2,x3,x4

p(x1)p(x2)p(x3|x1, x2)p(x4|x2)p(x5|x3)

1. Follow the elimination order, we get:

p(x5) =
∑

x2,x3,x4

p(x2)p(x4|x2)p(x5|x3)
∑
x1

p(x1)p(x3|x1, x2)

∝
∑

x2,x3,x4

φ1(x2, x3)p(x2)p(x4|x2)p(x5|x3)

=
∑
x3,x4

p(x5|x3)
∑
x2

φ1(x2, x3)p(x2)p(x4|x2)

∝
∑
x3,x4

φ2(x3, x4)p(x5|x3)

∝
∑
x4

φ3(x4, x5)

In this case, each summation requires at most O(n3) operations.

2. If we start with x3, we will get:

p(x5) =
∑

x1,x2,x4

p(x1)p(x2)p(x4|x2)
∑
x3

p(x3|x1, x2)p(x5|x3)

which gives us φ(x1, x2, x5) over 3 variables, which would require O(n4) opera-
tions. This might be more diffuclt when the graph becomes more complicated.

Exercise 4 (6 Points). Here we use a simple factor graph to practice Belief Propa-
gation. Consider following factor graph: assume designate node x3 as the root, use
the Belief Propagation to verify P̃ (x2) ∝

∑
x1,x3,x4

P̃ (x1, x2, x3, x4), where P̃ is the
unnormalized probability.
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Figure 4: Exercise 4

Solution. Define Ea(x1, x2) = − log fa(x1, x2) and so on. Starting from two leaf
nodes x1, x4, we have following sequence of six messages:

qx1→fa(x1) = 0

rfa→x2(x2) = log
∑
x1

exp(−Ea(x1, x2))

qx4→fc(x4) = 0

rfc→x2(x2) = log
∑
x4

exp(−Ec(x2, x4))

qx2→fb(x2) = rfa→x2(x2) + rfc→x2(x2)

rfb→x3(x3) = log
∑
x2

exp(−Eb(x2, x3) + qx2→fb(x2))

Now, we propagate messages from the root node out to the leaf nodes:

qx3→fb(x3) = 0

rfb→x2(x2) = log
∑
x3

exp(−Eb(x2, x3))

qx2→fa(x2) = rfb→x2(x2) + rfc→x2(x2)

rfa→x1(x1) = log
∑
x2

exp(−Ea(x1, x2) + qx2→fa(x2))

qx2→fc(x2) = rfa→x2(x2) + rfb→x2(x2)

rfc→x4(x4) = log
∑
x2

exp(−Ec(x2, x4) + qx2→fc(x2))

Then, we can evaluate the marginals:

P̃ (x2) ∝ exp(rfa→x2(x2) + rfb→x2(x2) + rfc→x2(x2))

∝
∑
x1

∑
x3

∑
x4

fa(x1, x2)fb(x2, x3)fc(x2, x4)

∝
∑

x1,x3,x4

P̃ (x1, x2, x3, x4)

4


