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Exact Inference (1246 Points)

Exercise 1 (4 Points). Firstly, draw one possible factor graph for each Markovf
Random Fields shown as following. Then write the corresponding factorization and
independence of following 4 Markov Random Fields:
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Figure 1: Exercise 1

Solution. Actually, each MRF has several factor graphs. Here we show one possible
factor graph for each. The corresponding factor graphs are:
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Figure 2: Exercise 2

_P(@1,22,23)

1. Factorization: . Independence: None.
> (T1,22,73)

2. Factorization: Zi(;(lx?;f)(;az?’ig) Independence: X, 1 X3|X;.

3. Factorization: % Independence: X3 L (X7, X5).

d(z1)d(z2)P(x3)
> s d(z1)d(z2)d(z3)

4. Factorization: . Independence: pairwise independent.
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Exercise 2 (4 Points). Consider following directed chain of 4 random variables, each
variable can take n number of values. Assume we want to evaluate the probability
that X, takes on value x4, i.e. P(Xy = x4).

1. If we use straightforward probabilistic description, how many entries are re-
quired for a full joint probability table regarding n? How many operations are
required ragarding n? (Use Big O notation).

2. Write down the factorization of P(z1,xs,x3,24) and explain how we can use
it to simplify the computation.

3. How many operations do we need now regarding n? (Use Big O notation).

Solution. We first write down the formula for computing P(X,):

P(z4) = Z Pz, 29,23, 24) (1)

Z1,22,23

1. If we write down the table directly, each variable has n number of values
and we have 4 variables. The table will be n*. To commpute the marginal
distribution, we need to sum over other 3 variables, which involves O(n?)
addition operations.

2. P(zy,x9,x3,24) = P(x1)P(x2|x1) P(x3]22) P(24]23). Now we plug it into above
equation:
P(zy) = Y Pl(a1)P(as|w1)P(w3]2s) Plaa|s)

T1,22,T3

- Z P(x?"%)P(M\iUg)ZP(xl)P(xQ\xl)

T2,T3

=Y P(a) P(xs|22) P(as)zs)

Z2,T3

=) P(xs)P(x]s)

3. The operations are O(n?) now. Because for each variable, we need to marginal-
ized it by considering the node and its child.

Exercise 3 (4 Points). Using the same idea from previous exercise, consider follow-
ing problem, assume each variable has n number of values:

1. Using variable elimination with the order x1, xs, x4, x3 to compute P(zs5). How
many operations do we need regarding n?

2. What if we eliminate with the order w3, x,zs, x4 to compute P(z5)? How
many operations do we need reagarding n?



Figure 3: Exercise 3

Solution. To compute the marginal distribution of x5 and consider the graph, we
have :

p(m5): Z p(331,$2,5€3,91747$5): Z p(%)p(@)?(%’xh$2)p($4|$2)p($5\$3)

x1,T2,L3,T4 Z1,T2,T3,T4

1. Follow the elimination order, we get:

plrs) = Y plea)p(walza)p(ws|es) Y p(ar)p(ws|er, vs)

xr2,3,T4 1

08 Z <Z51($27$3)p($2)p($4|$2)p(9€5|$3)
T2,T3,T4

= plas|es) Y ¢1(we, v5)p(as)p(aslzs)
T3,T4 T2

X Z ¢2($37$4)p($5|$3)
x3,T4

X Z¢3(9€479€5)

In this case, each summation requires at most O(n?) operations.

2. If we start with x5, we will get:

plas) = Y pla)p(@e)p(@alzs) Y plas|er, z2)p(as|as)

T1,22,T4 z3

which gives us ¢(z1, s, x5) over 3 variables, which would require O(n?) opera-
tions. This might be more diffuclt when the graph becomes more complicated.

Exercise 4 (6 Points). Here we use a simple factor graph to practice Belief Propa-
gation. Consider following factor graph: assume designate node z3 as the root, use
the Belief Propagation to verify P(z;) o< 3 P(xy, 2o, 3, 24), where P is the
unnormalized probability.

Z1,T3,T4



Figure 4: Exercise 4

Solution. Define E,(z1,22) = —log f.(z1,22) and so on. Starting from two leaf
nodes x1, x4, we have following sequence of six messages:

q$1_>fa(xl> = O
sy (T2) = log Z exp(—FEq(21,22))
1

q:t44)fc (x4> - O
P oo (2) = 0g Y~ exp(—E,(w2, 74))
T4

Azo—f, (:L‘2> = Tfa—zo (:132) + Tfe—ao (m2)

T fo—as (z3) = log Z exp(—Ep(22, 23) + Qzz— fy (22))

z2

Now, we propagate messages from the root node out to the leaf nodes:

Az3—f, (5173) =0
P fyors(T2) = log Y~ exp(—Ey(wy, 73))

Z3

Qzo—fo (xQ) = Tfy—as (IQ) + T fe—as ('TQ)

Tfamsay (21) = log Z exp(—Ea(21, 22) + quy 1, (22))
)

Axo— f. (xQ) = T fa—xs (l’g) + T f—zo (.1'2)

Phooas(24) =108 Y exp(—Ee(2, 24) + ry 7. (22))
T2

Then, we can evaluate the marginals:

P(x2) o exXP(Tf, ay (T2) + T2y (T2) + 775y (72))

o Z Z Z fa(@1, 22) fo(22, ¥3) fe(T2, 24)

r1 T3 T4

X Z p($1,3§’2,$3,$4)

T1,L3,T4



