Probabilistic Graphical Models in Computer Vision

Lecture: Dr. Tao Wu Exercises: Yuesong Shen, Zhenzhang Ye Summer Semester 2019 Computer Vision Group Institut für Informatik Technische Universität München

Weekly Exercises 6

Room: 02.09.023 Wednesday, 26.06.2019, 12:15 - 14:00

Sampling and MCMC (Due: 24.06) (8+4 Points)

Exercise 1 (4 Points). Given a random number generator following the uniform distribution $\mathcal{U}(0,1)$. How to generate samples from distribution $\mathcal{U}(a,b)$ for some a < b? Justify your answer.

Solution. The CDF of $\mathcal{U}(a, b)$ is:

$$F(x) = egin{cases} 0, & ext{if $\mathbf{x}<\mathbf{a}$;} \ (x-a)/(b-a), & ext{if $\mathbf{a}\leq x\leq b$;} \ 1, & ext{if $\mathbf{x}>\mathbf{b}$.} \end{cases}$$

Taking the inverse of CDF over the range [a, b], we have that $F^{-1}(x) = (b-a) \cdot x + a$. Thus we have $X \sim \mathcal{U}(0, 1) \Longrightarrow (b-a) \cdot X + a \sim \mathcal{U}(a, b)$.

Exercise 2 (8 Points). Derive the polar form of Box-Muller method: Let $(X_1, X_2) \sim \mathcal{N}(0, I_2)$, let $(Z_1, Z_2) \sim \frac{1}{\pi} \mathbf{1} \{ z_1^2 + z_2^2 < 1 \}$,

- 1) Let (T, γ) be the polar transform of (Z_1, Z_2) , show that we have $T^2 \sim \mathcal{U}(0, 1)$, $\gamma \sim \mathcal{U}(0, 2\pi)$ and that T, γ are independent;
- 2) Let (R, θ) be the polar transform of (X_1, X_2) , show that we have $R^2 \sim \exp(1/2)$, $\theta \sim \mathcal{U}(0, 2\pi)$ and that R, θ are independent;
- 3) Using 1) and 2), show that by setting $R^2 = -2 \log T^2$, $\theta = \gamma$, R, θ satisfy the required form in 2) and we can derive the following sample transformation:

$$x_i = z_i \sqrt{\frac{-2\log(z_1^2 + z_2^2)}{z_1^2 + z_2^2}}, i \in \{1, 2\}$$
(1)

Solution.

First let's prove the following result:

Let (S, α) be the polar transform of (A, B), the determinant of the Jacobian of the change of variable $(A, B) \to (S^2, \alpha)$ is $\det(J) = \det \begin{pmatrix} \frac{\partial A}{\partial S^2} & \frac{\partial A}{\partial \alpha} \\ \frac{\partial B}{\partial S^2} & \frac{\partial B}{\partial \alpha} \end{pmatrix} = -\frac{1}{2}$.

To prove this, let $\overline{S} = S^2$, we use the fact that

$$A = S\cos(\alpha) = \bar{S}^{1/2}\cos(\alpha) \tag{2}$$

$$B = S\sin(\alpha) = \bar{S}^{1/2}\sin(\alpha) \tag{3}$$

thus

$$\frac{\partial A}{\partial \alpha} = -\bar{S}^{1/2}\sin(\alpha) \tag{4}$$

$$\frac{\partial A}{\partial \bar{S}} = -\frac{1}{2} \bar{S}^{-1/2} \cos(\alpha) \tag{5}$$

$$\frac{\partial B}{\partial \alpha} = \bar{S}^{1/2} \cos(\alpha) \tag{6}$$

$$\frac{\partial B}{\partial \bar{S}} = -\frac{1}{2}\bar{S}^{-1/2}\sin(\alpha) \tag{7}$$

and we have

$$\det(J) = \det\left(\frac{\frac{\partial A}{\partial S^2}}{\frac{\partial B}{\partial S^2}} \frac{\frac{\partial A}{\partial \alpha}}{\frac{\partial B}{\partial \alpha}}\right) \tag{8}$$

$$= \det \begin{pmatrix} -\frac{1}{2}S^{-1/2}\cos(\alpha) & -S^{1/2}\sin(\alpha) \\ -\frac{1}{2}\bar{S}^{-1/2}\sin(\alpha) & \bar{S}^{1/2}\cos(\alpha) \end{pmatrix}$$
(9)

$$= -\frac{1}{2} \tag{10}$$

- 1) Let $\overline{T} = T^2$, we have that $\overline{T} = T^2 = Z_1^2 + Z_2^2$, $\sin(\gamma) = Z_2/T$, $\cos(\gamma) = Z_1/T$. Since (Z_1, Z_2) samples uniformly from unit disk, we have that for $\overline{t} \in [0, 1]$, $\alpha \in [0, 2\pi]$, $p(\overline{T} = \overline{t}, \gamma = \alpha) = |\det(J)| \cdot \frac{1}{\pi} \cdot 1 = \frac{1}{2\pi} \cdot 1$. Thus \overline{T}, γ are independent and $\overline{T} = T^2 \sim \mathcal{U}(0, 1)$, $\gamma \sim \mathcal{U}(0, 2\pi)$;
- 2) Similarly, let $\bar{R} = R^2$ we have that $\bar{R} = X_1^2 + X_2^2, \sin(\theta) = X_2/R, \cos(\theta) = X_1/R.$

Since $p(x,y) = \frac{1}{2\pi} \exp(-(x_1^2 + x_2^2)/2) = \frac{1}{2\pi} \cdot |\det(J)| \exp(-\bar{r}/2) = p(\theta = \beta)p(\bar{R} = \bar{r})$, we have that \bar{R}, θ are independent and $\bar{R} = R^2 \sim \exp(1/2)$, $\theta \sim \mathcal{U}(0, 2\pi)$;

3) Let $(Z_1, Z_2) \sim \frac{1}{\pi} \mathbf{1} \{ z_1^2 + z_2^2 < 1 \}$, we know from 1) that its polar form (T, γ) have independent coordinates and $T^2 \sim \mathcal{U}(0, 1), \gamma \sim \mathcal{U}(0, 2\pi)$.

Thus $\theta = \gamma \sim \mathcal{U}(0, 2\pi)$ and the inverse CDF of exponential distribution gives us $R^2 = -2\log(T^2) \sim \exp(1/2)$ since $1 - T^2 \sim \mathcal{U}(0, 1)$. R, θ are independent since R only depend on T, θ only on γ and that T, γ are independent. From 2) we then have that the Cartesian coordinates

$$\begin{cases} X_1 = R\cos(\theta) = \sqrt{-2\log(T^2)} \cdot \frac{Z_1}{T} \\ X_2 = R\sin(\theta) = \sqrt{-2\log(T^2)} \cdot \frac{Z_2}{T} \end{cases}$$
(11)

are independent standard Gaussian distributions. Since $T^2 = Z_1^2 + Z_2^2$, we obtain the desired transformation.