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Abstract

In this paper we present a novel method for real-time camera tracking and 3D reconstruc-
tion of static indoor environments using an RGB-D sensor. We show that by representing the
geometry with a signed distance function (SDF), the camera pose can be efficiently estimated
by directly minimizing the error of the depth images on the SDF. As the SDF contains the
distances to the surface for each voxel, the pose optimization can be carried out extremely
fast. By iteratively estimating the camera poses and integrating the RGB-D data in the voxel
grid, a detailed reconstruction of an indoor environment can be achieved. We present re-
constructions of several rooms using a hand-held sensor and from onboard an autonomous
quadrocopter. Our extensive evaluation on publicly available benchmark data shows that our
approach is more accurate and robust than the iterated closest point algorithm (ICP) used by
KinectFusion, and yields often a comparable accuracy at much higher speed to feature-based
bundle adjustment methods such as RGB-D SLAM for up to medium-sized scenes

1 Introduction

3D simultaneous localization and mapping (SLAM) is a highly active research area as it is a
pre-requisite for many robotic tasks such as localization, navigation, exploration, and path plan-
ning.Structure from motion (SfM) techniques from computer vision typically use images from a
moving camera.The contribution of this work is a novel method for estimating the camera motion
directly based on the SDF. The key insight behind our approach is that the SDF already encodes
the distance of each voxel to the surface.

2 Main Objective

In this paper,
e We describe a direct approach to camera tracking on SDFs.
e We present a thorough evaluation of SDF based tracking and mapping on public benchmarks
e We compare the tracking performance to existing real-time solutions.

e We study the influence of alternative distance metrics, weighting functions and different
camera motions on a large number of different scenes.

o We demonstrate that our approach is directly applicable to position control of a quadrocopter
and the automatic 3D reconstruction of rooms as shown in figure 1
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Figure 1: Reconstruction of livring oom with a handheld sensor using our approach.

3 Approach

We represent the geometry using a signed distance function stored in a voxel grid. We follow
an iterative approach where we first estimate the camera pose given the previous SDF, and then
update the SDF based on the newly computed camera pose. Note that we optimize the camera
pose directly on the SDF, while KinectFusion [18] first generates a synthetic depth images that it
subsequently aligns to the current depth image using ICP.

3.1 Camera Tracking

In this part, we present how we estimate the camera motion given an SDF and a depth image.we
assume that we already have a representation of the geometry acquired from the previous depth
image given by the SDF Function .This function returns for any point x the signed distance from
x to the surface. The idea is now to use the SDF to construct an error metric that describes how
well a depth image fits to the SDF.This is explained in Figure 2.
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Figure 2: The SDF is constructed from the first n depth images and corresponding camera poses

3.2 Distance and Weighting Functions

These functions are used to determine which voxels have been observed by the depth camera and
update their distances accordingly .

3.2.1 Projective Point-to-Point

The projective point-to-point distance as the difference of the depth of the voxel and the observed
depth at (i,j) negative values are assigned to voxels in front of the observed surface, and positive
values to voxels behind.It is explained in figure 3



3.2 DistanRealnditVeightireg & ilnatking and 3D Reconstruction Using Signed Distance Functions

observed surface I

o-point

principal ¢
axis

Figure 3: Projective point to point

3.2.2 Projective Point-to-Plane

the point-to-point metric gets increasingly inaccurate the less the viewing angle is orthogonal to
the surface . As a first step, we apply a bilateral filter to the depth image and compute the normals
for all pixels. Given a voxel x, we compute its corresponding pixel coordinates (i; j) and read out
the observed surface normal n(i; j).It is explained in figure 4

surface normal n

Figure 4: Projective point to plane

3.2.3 Truncation

we truncate the projected distances d and apply a weighting term that blends out large distances,
which makes the gradient of our SDF zero in regions that are far away from the estimated sur-
face.For example , consider function shown in figure 5.
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Figure 5: We truncate large estimated distances to limit the influence of approximation errors and
noise.
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3.2.4 'Weighting

we employ a weighting function to give higher weights to voxels in front of the observed surface
and lower weights to voxels behind. Depending on the observation model of the depth sensor,
different weighting functions can be used.The linear weight, as proposed by Curless and Levoy [[2]]
and used in KinectFusion, assigns a constant weight to all voxels up to a certain penetration depth
Epsilon.
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Figure 6: Different Weight functions

4 Experimentl and Results

This approach for 3D reconstruction from an autonomous quadrocopter (see Figure ) equipped
with an RGB-D camera. Here tracking and reconstruction were carried out in real-time on an
external ground station. This demonstrates that our technique is applicable for the navigation of
quadrocopters and other robots.Note that in theory, the complexity of pose optimization solely
depends on the size of the input images, while the complexity of data fusion depends cubically on
the resolution of the volume.

Figure 7: Resulting 3D reconstruction of the room computed in real-time on the ground station

4.1 Benchmark Evaluation

We also evaluated our approach on the TUM RGB-D benchmark :[ [4]]. As comparison we used
the KinFu implementation [[I]] and RGB-D SLAM [[3]].For our algorithm, we found that the
point-to-point metric provides better results on most sequences. In comparison to RGB-D SLAM,
we achieve often a similar performance in terms of accuracy but require six to eight times less
computation time. The Results are show below.
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Method Res.  Teddy Fl Desk  Fl Desk? F3 Houschold  Fl Floor F1 360 FI1 Room Fl Plant Fl1 RPY Fl XYZ
KinFu 256 015 m 0.05Tm 0420 m (.64 m Failed 0913 m Failed ©0.598 m 0133 m 0026 m
KinFu 512 0337 m O0068m 0635 m 0.0&1 m Failed 0591 m 0.304 m 028l m 008l m 0025 m
Point-To-Plane 256 0072m O005Tm O0O078Em 0053 m 0811 m 0533 m 0.163 m 04T m 04T m 0029 m
Point-To-Plane 512 010l m 0059 m 0623 m 0053 m 0640 m 0206 m 010sm 0 m M2 m 0026m
Point-To-Point 256 0086 m 0038 m 06l m 0,039 m 064l m 0420 m 0021 m 0047 m 0047 m 0021 m
Point-To-Point 512 0080m 0035 m 0062m 0.040 m 05%7Tm 0119 m 00TEm 0043 m M2 m 0023 m
RGB-D SLAM 0Illm 0026m 043 m 0059 m 0035 m 007l m 0.101 m 0061 m 0029 m 0013 m

Figure 8: BenchMark Evaluation.

5 Conclusion

In this paper we presented a novel approach to directly estimate the camera movement using a
signed distance function. Our method allows the quick acquisition of textured 3D models that can
be used for real-time robot navigation. By evaluating our method on a public RGB-D benchmark,
we found that it outperforms ICP-based methods such as KinFu and, at least on medium-sized
scenes, often obtains a comparable performance with bundle adjustment methods such as RGB-D
SLAM at a significantly reduced computational effort.
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