
Naveen Kumar Subramanian

M.Sc Computational Science and Engineering

Technische Universität München

April 2019

Real-Time Camera Tracking and 3D 
Reconstruction
Using Signed Distance Functions

By Erik Bylow, Jurgen Sturmy, Christian Kerl, Fredrik Kahl, Daniel Cremers



• Novel method for real-time camera tracking and 3D reconstruction of static 

indoor environments using an RGB-D sensor. 

• representing the geometry with a signed distance function (SDF), .

• Proved that benchmark data that our approach is more accurate and robust than 

the iterated closest point algorithm (ICP) used by KinectFusion
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Abstract



• A direct approach to camera tracking on SDFs

• Present a thorough evaluation of SDF based tracking and mapping on public 

benchmarks

• Compare the tracking performance to existing real-time solutions

• Additionally , We study the influence of alternative distance metrics , weighting 

functions
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Main Contents Of The Paper



• Simultaneous localization and mapping refers to both the estimation of the camera pose and 

mapping of the environment.

• Structure from motion (SfM) techniques from computer vision typically use images from a 

moving camera.

Reconstruction of a living room with a handheld sensor using our approach
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Introduction
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Notations

• Rotation of Camera  R ϵ SO(3) 

• Translation  t ϵ 𝑅3

• At each time step, an RGB-D camera outputs a color and a depth image, to which we refer 

to by the functions

𝐼𝑅𝐺𝐵 : 𝑅2 𝑅3 and 𝐼𝑑: 𝑅
2 𝑅1

• The pinhole camera model with intrinsic parameters 𝑓𝑥, 𝑓𝑦, 𝑐𝑥 and 𝑐𝑦 corresponding to the 

focal length and the optical center. According to this model, a 3D point x = (𝑥, 𝑦, 𝑧)𝑇 is 

projected onto the image plane by

𝜋 𝑥, 𝑦, 𝑧 =
𝑓𝑥𝑋

𝑧
+ 𝐶𝑧,

𝑓𝑦𝑦

𝑧
+ 𝑐𝑧

𝑇

• we can reconstruct the 3D point corresponding to a pixel (𝑖, 𝑗)𝑇 ϵ 𝑅2 with depth z = 𝐼𝑑(i; j) by

𝜌 𝑖, 𝑗, 𝑧 =
𝑖 − 𝑐𝑥 𝑧

𝑓𝑥
,
𝑗 − 𝑐𝑦 𝑧

𝑓𝑦
, 𝑧

𝑇



1. Camera Tracking

• Estimate the camera motion given an SDF and a depth image

• To find the camera rotation R and translation t such that all reprojected points 

from the depth image lie as close as possible to the zero-crossing in the SDF
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Approach



2. Representation of SDF

• we represent the SDF using a discrete voxel grid of resolution m. We allocate two

grids in memory, where one stores the averaged distances, and the second one stores

the sum of all weights
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Approach



• Given a reconstruction volume of dimension width  height  depth, a world point

x = (𝑥, 𝑦, 𝑧)𝑇ϵ 𝑅3is mapped to voxel coordinates

Since (𝑖, 𝑗, 𝑘)𝑇 is generally non-integer, we determine the signed distance value  (x) by 

tri-linear interpolation between ѱ(x) the values of its eight integer neighbors.

2.Representation of SDF



3. Distance and Weighting Functions
• To determine which voxels have been observed by the depth camera and

update their distances accordingly .

Projective Point-to-Point: the projective point-to-point distance as the difference of the depth 

of the voxel and the observed depth at (𝑖, 𝑗)𝑇 negative values are assigned to voxels in front of 

the observed surface, and positive values to voxels behind.
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3. Distance and Weighting Functions

Projective Point-To-Plane: the point-to-point metric gets increasingly inaccurate the less the 

viewing angle is orthogonal to the surface . As a first step, we apply a bilateral filter to the 

depth image and compute the normals for all pixels. Given a voxel x, we compute its 

corresponding pixel coordinates (i; j) and read out the observed surface normal n(i; j). The 

point-to-plane  distance can then be computed as

𝑑𝑝𝑜𝑖𝑛𝑡−𝑡𝑜−𝑝𝑙𝑎𝑛𝑒 𝑥 : = 𝑦 − 𝑥 𝑇𝑛 𝑖, 𝑗 .
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3. Distance and Weighting Functions

Truncation we truncate the projected distances d and apply a weighting

term that blends out large distances, which makes the gradient of our SDF zero in regions that 

are far away from the estimated surface.

Weighting:. we employ a weighting function to give higher weights to voxels in front of the 

observed surface and lower weights to voxels behind. 

Depending on the observation model of the depth sensor, different weighting functions can be 

used.
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3. Distance and Weighting Functions
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Truncation Function

𝑑𝑡𝑟𝑢𝑛𝑐 =

−𝛿 𝑖𝑓 𝑑 < −𝛿

𝑑 𝑖𝑓 𝑑 ≤ 𝛿
𝛿 𝑖𝑓 𝑑 > 𝛿

Exponential Weight Function

𝑊𝑒𝑥𝑝 𝑥 =

1 𝑖𝑓 𝑑 < 𝜖

𝑒−𝜎 𝑑−𝜖 2
𝑖𝑓 𝑑 ≥ 𝜖 𝑎𝑛𝑑 𝑑 ≤ 𝛿

0 𝑖𝑓 𝑑 < 𝛿

Approach



4. Data Fusion and 3D Reconstruction

• Goal to fuse all measurements to get a possible estimate of SDF ѱ(x)

• All Distance measurements normally distributed

• By taking distance , the maximize the livelihood function ѱ and taking negative 

logarithm we get

𝐿 ѱ =   σ𝑖=1
𝑛 1

2
𝑤𝑖 ѱ − 𝑑𝑖

2

• By taking the derivative and equating to zero , we get   

ѱ =
σ𝑖=1
𝑛 𝑤𝑖𝑑𝑖
σ𝑖=1
𝑛 𝑤𝑖
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Approach



5. Meshing and Colorization

• Color texture using an additional voxel grid consisting of three channels R G B for the color 

and one additional channel for the color weights 𝑊𝑐

• we retrieve the observed color 𝒓, 𝒈, 𝒃 𝑻 = 𝑰𝑹𝑮𝑩 𝒊, 𝒋

from the RGB image and update the color estimate as the  running average as 

𝑅 ←
𝑊𝑐𝑅+𝑊𝑐

𝑛+1𝑟

𝑤𝑐+𝑊𝑐
𝑛+1

and similarly for G and R , where 𝑊𝑐
𝑛+1 is the weight of new measurement and it is given 

by 

𝑊𝑐
𝑛+1 = 𝑊𝑛+1 cos ∅

∅ is the angle between ray and principal axis
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5. Meshing and Colorization

Visualization of the (downsampled) voxel grid underlying the 

reconstruction volume (m = 256).



Experiment Setup:
1. Handheld Asus Xtion Pro Live sensor Is used for Scanning

2. Laptop with a Quadro GPU from Nvidia gives live view of reconstructed Image

AscTec Pelican platform used.
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Results and BenchMark



• This approach for 3D reconstruction from an autonomous quadrocopter (see Figure ) 

equipped  with an RGB-D camera.

• tracking and reconstruction were carried out in real-time on an external ground station

• This demonstrates that our technique is applicable for the navigation of quadrocopters and 

other robots.

Resulting 3D reconstruction of the room computed in real-time on the ground station
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Experiments



• Evaluated on TUM RGB-D BenchMark

• Compared with  KinFu implementation and RGB-D SLAM

Parameters that are chosen are 𝛿 = 0.3 𝑚 and  𝜖 = 0.025 𝑚 and  results are

18

Benchmark 



Observations

• Our approach performs well due to the fact that KinFu looses much valuable information 

because of the down projection of the SDF

• In comparison to RGB-D SLAM we achieve often a similar performance in terms of

Accuracy but its takes less computation time due to the fact 
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Benchmark



Limitations

• Since this approach only uses structure for tracking, it fails in cases where only 

co-planar surfaces are visible, such as a wall , but RGB-D SLAM uses texture

• additionally  they did not exploit the color information during tracking

Conclusion:

• This method allows the quick acquisition of textured 3D models that can be used 

for real-time robot navigation

• For larger geometries, the combination of our method with a different SLAM 

solver would be interesting.

• Including  and investigating  methods that allow a more efficient representation of 

the 3D geometry will make it interesting.
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Summary


