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Abstract

Newcombe et al. introduced a system, KinectFusion, to realize real-time robust mapping
and tracking regardless of lightning conditions in 2011. Kinect is a device with infrared emitter
and sensor, through which depth map of the target scene could be obtained. By using the
depth map as an input, the system could perform accurate 3D reconstruction. Iterative closest
point (ICP) algorithm is used for camera pose estimation. Thus, all data obtained from the
Kinect will be fused into the reconstruction model. In KinectFusion, space could be described
by volumetric representation. The space is divided into small squares, and each square is called
a voxel. This paper will focus on the methods and algorithms used in this system. After a brief
introduction on 3D reconstruction and KinectFusion, the detailed concept in each step will be
discussed. Finally, experiments and results will be presented with analysis of advantages and
disadvantages.

1 Introduction

3D reconstruction is a technique to obtain the appearance and shape of real objects, then build a
global model of it. As a popular topic in the computer vision domain, it provides more compre-
hensive geometric information then 2D images, and it could be applied in augmented reality and
virtual reality application as a connection between 2D and 3D.

Conventional methods of 3D reconstruction include structure from motion (SFM) and multi-
view stereo (MVS). Basically, according to a series of images which was captured at different
locations, the 3D model could be obtained offline. Although several researches on them have
shown remarkable results, those methods are hard to be used in real-time application.

Figure 1: Example input and output[4]

In 2011, Newcombe et al. proposed a new system, KinectFusion, which made real-time 3D
reconstruction, using only a low-cost and hand-held RGBD camera, come true. In this system,
according to the raw depth map obtained from a Kinect device, the complex and arbitrary indoor
scenes could be reconstructed with high accuracy in real time. As an example shown in Figure
1, the left image is an input to this system. With the Kinect depth camera only, a normal map
(color) and Phong-shaded renderings (grey scale) could be generated.

In this paper, we will briefly go through the methods used in KinectFusion. Using only depth
information, the system could track 6 degrees-of-freedom camera pose continuously (tracking), and
all data obtained will be fused into one single global model rather than capturing features and using
sub-data-set (mapping). As a result, the system successfully mitigates the influence of lightning
conditions and have higher accuracy. Generally, the user only holds a Kinect device and moves
around the target scene, a smooth and up-to-date 3D surface model will be reconstructed. With
highly parallel general purpose GPU(GPGPU),both camera pose and the model could be updated
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at the Kinect sensor’s frame rate (30Hz). A series of experiments and results will also be presented
and analyzed.

2 Method Description

Figure 2: Overall system work flow [4]

Figure 2 shows an overall work flow of KinectFusion. The system is composed of four steps.
Firstly, the system deals with the raw depth map streamed from the Kinect sensor in order to
generate a dense vertex map and normal map pyramid. Then, according to the alignment between
the current sensor measurement and the predicted surface, the camera pose could be estimated.
After that, with the estimated camera pose, the surface measurement will be integrated into the
scene model with truncated signed distence function (TSDF) representation. Finally, The TSDF
value will be used to compute surface prediction. In the following sessions, each step will be
discussed in details.

2.1 Preliminaries

• The 6DOF camera pose is represented by a rigid body transformation matrix at time k:

Tg,k =

[
Rg,k tg,k
0T 1

]
∈ SE3 where SE3 := {R, t | R ∈ SO3, t ∈ R3}. (1)

R denotes rotation transformation and t denotes translate transformation. As the scene’s
size should not be changed, the scale parameter is set to 0 and 1. Then, a point pk in the
camera frame could be transferred in to the global frame:

pg = Tg,kpk (2)

• K is used to denote the camera calibration matrix which transforms points on the sensors
plane into image pixels.

• Dehomogenisation:

q = π(p) where p ∈ R3 = (x, y, z)T , q ∈ R2 = (x/z, y/z)T (3)

• Homogeneous vectors:
u̇ = (uT | 1)T (4)

2.2 Surface measurement

Surface measurement is a pre-processing stage. Figure 3 shows the work flow of this step. u is
used to denote an image pixel, such that u=(u,v)T .Firstly, bilateral filter is applied to raw depth
map Rk to reduce noise. To recalculate the depth value of a specific pixel, weights are assigned
to the surrounding pixels within a certain range. After weighted average, we will get the depth
value of the current point with noise reduced. Ws refers to spatial proximity, and Wr refers to the
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Figure 3: Surface measurement work flow

brightness similarity. In other words, the closer the surrounding pixel is, the more correlated the
two pixels are, the bigger the value of Ws is; the less the difference between two pixels’ brightness,
the more correlated the two pixels are, the bigger the value of Wr is.

Dk(u) =
1

Wp

∑
WsWrRk(q) (5)

By back-projecting the filtered depth values into the sensors frame, the vertex map is generated:

Vk(u) = Dk(u)K−1u̇ (6)

As normal vectors could be calculated by the cross product of vectors, we can simply get the
normal map by computation between neighbouring vertices, v[x] is the normalizing step:

Nk(u) = v[(Vk(u+ 1, v)−Vk(u, v))× (Vk(u, v + 1)−Vk(u, v))] where v[x] = x/ ‖ x ‖2 (7)

However, a three-level vertex and normal map pyramid is needed in this system. Firstly, we set
the bottom level to the original filtered depth map (Dk). Then, from bottom to top, we half the
resolution for each level by block averaging and sub-sampling. After that, we get a depth map
pyramid. For each level, we could compute the vertex map and normal map using equation 6 and
7. Using a pyramid rather than a single depth map, the camera pose could be computed from
coarse-to-fine which speed up the computation. Furthermore, the pyramid helps to get a more
accurate result. If we conduct computation directly using the original filtered depth map, there
may be more errors during the alignment process. The bigger the data set, the more details it
contains, also, the more similar features it may have for different locations which results in wrong
alignment.

2.3 Mapping as Surface Reconstruction

Surface reconstruction is the global scene fusion process, it fused all data of each frame into a global
scene model consecutively, using truncated signed distance function (TSDF) as representation.

2.3.1 TSDF Representation

There are two values stored in a voxel in a TSDF model Sk(p), one is distance valueFk(p), another
is weight value Wk(p). As Figure 4 shows, on the surface the distance value stored as 0, the visible
side stored as positive value, and the invisible side as negative value. On visible side, the nearer
the voxel to the sensor, the bigger the value would be; On the other side, the farther the voxel to
the sensor, the smaller the value would be. Besides, as for surface reconstruction, only the voxels
near the surface are meaningful. Thus, a truncated value is set. Every voxel whose distance to the
surface is bigger than this value, will be stored as 1 or -1, as Figure 5 shows. The weight value is
related to the uncertainty of measurement.

2.3.2 Calculation

Suppose that the uncertainty could be truncated, the true value lies within ±µ of the measured
value.

FRk
(p) = Ψ(λ−1 ‖ tg,k − p ‖2 −Rk(x)) (8)
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Figure 4: TSDF model [1] Figure 5: TSDF representation example [2]

λ =‖ K−1ẋ ‖2 (9)

x = bπ(KT−1
g,kp)c (10)

Ψ(η) =

min(1,
η

µ
)sgn(η) iffη ≥ −µ

null otherwise
(11)

p is a 3D global point, while x is the corresponding 2D pixel point. λ is a normalization
factor. According to Equation 8, we compute the ray from the camera center to the 3D point p
(approximates the z coordinate),then minus the original depth data Rk(x). After normalization,
we get the distance value of voxel p. The weight value should be proportional to cosθ/Rk(x).

Finally, the global TSDF could be updated by weighted averaging between previous TSDF
model and current TSDF value. Although Wk(p) is proportional to the previous equation, we can
simply let Wk(p) = 1 which provides good results practically. We may also set a truncated value
of weight as if the value is very small, the distance value would be meaningless.

2.4 Surface prediction from ray casting the TSDF

As discussed previously, when Fk(p) = 0, the voxel p will be on the surface. Thus, a method,
called ray casting, could be used to estimate the surface. Basically, the ray starts from the camera,
goes against the light, until the distance value stored in each voxel goes from positive to negative
or vise versa. According to the definition of TSDF representation, surface must be between those
two voxels.

2.5 Sensor pose estimation

Iterative closest point (ICP) algorithm [5] is used to compute the rigid body transformation. In
this system, frame-to-model ICP is used rather than general frame-to-frame ICP. In other words,
we won’t find the corresponding point cloud through two consecutive frames. Instead, we project
the point a of current measured surface to the previous camera pose, the point of intersection on
the predicted surface will be the corresponding point b as Figure 6 shows.

To calculate the energy between measured surface and predicted surface, Newcombe et al. uses
point-to-plane algorithm as Figure 7shows.
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Figure 6: Finding corresponding point
pairs. Red line denotes current mea-
sured surface, green line denotes pre-
dicted surface [6]

Figure 7: Point-to-plane ICP [3]

3 Experiments and Results

Newcombe et al. have conducted a series of experiments to test their system, Figure 8 and 9 shows
some example output. The Kinect sensor is placed on a fixed turntable which will be spun through
a full perfect circle resulting in N = 560 frames.

Figure 8: Experiments example output. The left one shows
a comparison to this frame-to-model system, which used
frame-to-frame tracking (560 frames were fed). The second
one shows a result of partial loop (less than 560 frames
were fed). The third one shows a result of one complete
loop closure (560 frames were fed). The last one shows
a result of four times duplicated loop closure (560 frames
were fed repeatedly).[4]

Figure 9: Sample result. 560×4
frames are fed from a free-moving
Kinect sensor. Compared with
previous set of experiments, we
can see better result using frame-
to-model algorithm. Besides, the
result is remarkable for both per-
fect circle loop moving or free mov-
ing of the sensor.[4]

4 Discussion

According to the series of experiments, the performance of KinectFusion is remarkable with drift-
free camera tracking and robustness. Even in darkness, the system could perform successfully.
However, the main failure of the system occurs when reconstructing larger plane scene as there is
few features which is hard to align.
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5 Summary

KinectFusion is a real-time 3D reconstruction system introduced by Newcombe et al. in 2011.
Rather than feature capture, the system fuse all data streamed from a Kinect sensor into a up-to-
date global surface model. Using frame-to-model ICP algorithm to estimate camera pose. With
the use of fully parallel algorithm, the system makes full use of commodity GPGPU hardware.
However, challenges still remains. The system performs successfully to reconstruct indoor scene
which is less than 7m3. For larger scene, too much memory will be needed leads to failure in
real-time tracking and mapping. Besides, drift could occur as more pixels involved.

References

[1] Brian Curless and Marc Levoy. A volumetric method for building complex models from range
images. 1996.

[2] Distributor. Using kinfu large scale to generate a textured mesh. http://pointclouds.org/

documentation/tutorials/using_kinfu_large_scale.php.

[3] Kok-Lim Low. Linear least-squares optimization for point-to-plane icp surface registration.
Chapel Hill, University of North Carolina, 4(10), 2004.

[4] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim, An-
drew J. Davison, Pushmeet Kohli, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon.
KinectFusion: Real-time dense surface mapping and tracking. In Proceedings of the 2011 10th
IEEE International Symposium on Mixed and Augmented Reality, ISMAR ’11, pages 127–136,
Washington, DC, USA, 2011.

[5] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the icp algorithm. In 3dim, vol-
ume 1, pages 145–152, 2001.

[6] Patrick Stotko. State of the art in real-time registration of rgb-d images. In Central European
Seminar on Computer Graphics for Students (CESCG 2016), 2016.

6

 http://pointclouds.org/documentation/tutorials/using_kinfu_large_scale.php
 http://pointclouds.org/documentation/tutorials/using_kinfu_large_scale.php

	Introduction
	Method Description
	Preliminaries
	Surface measurement
	Mapping as Surface Reconstruction
	TSDF Representation
	Calculation

	Surface prediction from ray casting the TSDF
	Sensor pose estimation

	Experiments and Results
	Discussion
	Summary



