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Abstract

High quality 3D scanning has a multitude of challenges, including drift in pose estima-
tion and the lack of real-time usage. Recent online methods demonstrated good results, but
BundleFusion by Dai et al. outperforms state of the art systems by speed and quality of
results. BundleFusion is a real-time end-to-end reconstruction framework, which is based on
a local-to-global pose estimation strategy, by considering the current and previous RGB-D
input frames. Also, a parallel optimization technique is being used, based on sparse-to-dense
features and geometric and photometric matching.

The authors’ approach estimates bundle adjusted poses in real-time, supports tracking by
ensuring global consistency, re-localization, while dealing with loop closures and re-estimating
the 3D model in real-time.

1 Introduction

Applications in robotics, augmented reality and gaming opened the need for real-time 3D scanning
and reconstruction systems, with integration into high-quality models, that also provide feedback
for the user. In order to achieve such results, the requirements needed are:

e For the model to have a continuous surface, there has to be a high quality representation of
the surfaces, rather than point clouds (used in [I1]).

e There is a need to acquire models of large spaces, while preserving both the global structure
and the local accuracy.

e Robust tracking is required in order to deal with pose drift generated problems, such as loop
closures, re-localization, while ensuring global consistency.

e There is a need to continuously integrate acquired data and update the 3D model in a real-
time manner, according to new pose estimates.

The aim of BundleFusion is to address all the requirements described previously in an end-to-
end 3D reconstruction system. At its core, there lies a local-to-global pose optimization technique.
By globally correlating the frames, drift related problems such as loop closures are handled contin-
uously, meaning there is no need for an explicit loop closure detection, which reduces significantly
the computation time and makes it robust. Also, a key component of the BundleFusion approach
is the parallelized sparse-to-dense optimization, where sparse features, photometric and geometric
transformations are used for the coarse-to-fine scale alignment. This technique facilitates both
a consistent global structure and high-accurate local surface details. The RGB-D reintegration
strategy of on-the-fly-scene updates ensures that the method can be used in real time.

2 Related work

Concerning 3D scanning and reconstruction, there has been a lot of work over the past years.
While each of the used methods had both strengths and weaknesses, volumetric methods based
on truncated signed functions have been lately used for high-quality reconstructions. One recent
example is KinectFusion [§], which was the first paper to show that it was possible to scan and
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reconstruct 3D objects in real time using a volumetric based approach. Concerning surface rep-
resentations, ElasticFusion [I1] supports a point-based representation, which was proven to limit
the scan completeness.

Likewise, most methods require access to all input RGB-D data frames and do offline processing,
which don’t enable using the method in a real-time manner [2].

Most real time approaches use a frame-to-model iterative closest point (ICP) algorithm [I],
which is very efficient,but alignment occurs on a frame to frame basis, which means it can be very
easy to accumulate drift over time. To avoid these issues, researchers have tried to use: loop closure
detection [I0], incremental bundle adjustment [4] or recovery from tracking failures by image or
keypoint-based relocalization [5].

3 Method overview

Figure 1: Method overview [3]: BundleFusion takes as input RGB-D streams obtained by using
commodity sensors, detects correspondences between input frames and performs a local-to-global
pose alignment using sparse to dense correspondences to compute the estimate.
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RBG-D streams captured by commodity sensors are used as inputs. The captured frames
are then matched against all previous frames, while looking for correspondences between them.
Sparse correspondences are found through pairwise Scale-Invariant Feature Transform (SIFT) [7]
detection.

For global alignment, BundleFusion performs a sparse-to-dense global pose optimization: firstly,
it uses sparse features for a global pose alignment, and then the results are refined through dense
photometric and geometric transformations. The used approach is a coarse-to-fine alignment. For
the global pose alignment, BundleFusion performs a local-to-global optimization: every consecu-
tive n frames compose a chunk, which is locally optimized. Then, all chunks are combined with
respect to each other, thus obtaining a global optimization. Pose alignment is formulated as energy
minimization, in which a tailored Gauss-Newton method is used.

The dense scene reconstruction is obtained using a sparse volumetric representation, where on-
the-fly scene updates are allowed. In order to update for a new pose, the RGB-D image of the old
pose can be removed by de-integrating and re-integrating it at a new pose. Thus, BundleFusion
scans and reconstructs a consistent 3D model.

The input to BundleFusion is the RGB-D stream S = f; = (C;, D;), where C; and D; represent
the color and depth of the i-th frame. There are taken into account only rigid camera transforms
T;, where transformations T;(p) = R;p + t; (rotation R;, translation ¢;) map from the camera
coordinates to the world space coordinates.

3.1 Feature Correspondence Search

In BundleFusion, the input frames are pairwise searched for feature detection, feature matching
and correspondence filtering steps. For each new input frame, Scale-Invariant Feature Transform
(SIFT) [7] features are detected and matched to the features of all previous frames. SIFT is used
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as it deals with the transforms encountered during scanning: scaling, rotation and translation.
The aim is high precision, since any misalignment will affect the later global pose optimization.

Then, potential matches between each pair of frames are filtered to remove any outliers, in
order to produce a list of valid pairwise correspondences, which are later needed for as input the
global pose alignment. Thus, BundleFusion uses correspondence filtering techniques.

3.1.1 Key Point Correspondence Filter

First, the authors apply the key point correspondence filter, where they greedily look for low
distance correspondences that have a consistent rigid transform between them. They calculate the
distance as Root Mean Square Deviation (RMSD) using the Kabsch algorithm [6].

3.1.2 Surface Area Filter

Secondly, they check if the area spanned by the features is large enough (i.e. if there is enough
overlap between frames), as correspondences over small sizes are prone to ambiguity. If the ar-
eas spanned by 2 sets of correspondences are too small, the set of correspondences is considered
ambiguous and discarded.

3.1.3 Dense Verification

Finally, they apply a dense verification where the goal is to look for a high re-projection error,
when they project the pixels from one frame into another, under the transform induced by the
correspondence set.It is a geometric and phometric verification step. The total re-projection error
from f; to f; is [3]:
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Thus, matches between frames f; and f; are invalidated in the case of excessive re-projection
error. If all the checks are passed after applying the correspondence filtering, then they are added
to a valid set, which is later used for pose optimization.

3.2 Hierarchical Optimization

BundleFusion applies a hierarchical optimization strategy. The input sequence of RGB-D data
stream is split into chunks of 11 consecutive frames. On the lowest level, alignments within a
chunk are optimized. On the higher level, chunks are globally aligned against each other, using
representative keyframes per chunk.

The goal of local pose optimization is to get the best intra-chunk alignments. Therefore, valid
correspondences are searched pairwise between all frames of the chunk, and then a sparse-to-dense
energy minimization approach is applied.

A per-chunk keyframe is defined as the RGB-D data of the chunk’s first frame. The keyframes
are then used for the global inter-chunk pose optimization. Correspondence search and filtering
between global keyframes is similar to that within a chunk, but on the level of all keyframes and
their feature sets. The global pose optimization computes the best global alignments for the set of
all keyframes of the chunks, therefore it is aligning all chunks globally. Again, the sparse-to-dense
energy minimization approach will be applied. The energy optimization technique will be detailed
next.

3.3 Pose Alignment as Energy Optimization

For the pose optimization, a sparse-to-dense approach is used, where the energy is a linear combi-
nation between the sparse energy term and dense energy term [3]:

Ealign (X) = wsparseEsparse + wdenseEdense (X) (2)
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The sparse correspondences give us a good sense of the global structure, but it cannot be that
precise, and the dense energy term is more accurate, but it has a small basin of convergence. Thus,
Wense 1s linearly increased; this allows the sparse term to first find a good global structure, which
is then refined with the dense term, therefore achieving coarse-to-fine alignment.

The sparse term, a traditional bundle adjustment, helps with minimizing the sum of distances
between the space positions over all correspondences between all pairs of frames. The idea is to
seek the best rigid transformations such that the Euclidean distance over all the feature matches
is minimized.
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The dense energy term is a linear combination of depth and color alignment. The dense
photometric and geometric constraints are used for fine scale alignment.

Edense (X) = wphotoEphoto + wgeoEgeo(X)~ (4)

For the photometric term [3], the error of the gradient I; of the luminance of C; (i.e. color of
the i-th frame) is evaluated to gain robustness against lightning changes.
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Ephoto(X) = Y D IMi(n(din)) = Li(n (T} Tidip)) 3. (5)

(i,5)eE k=0

For the geometric term [3], pixels are taken from one frame, projected into another frame, and
then a point to plane distance is computed .
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Thus, a coarse-to-fine alignment method is applied.

3.4 Fast and Robust Optimization Strategy

The main part of BundleFusion, the global pose alignment, is actually a non-linear least squares
problem in the extrinsic camera parameters. Since the goal is to use the algorithm in real-time,
an optimization strategy was needed. The approach is based on the Gauss-Newton method, which
requires only the first derivative. The goal is to find the best parameter X* by minimizing the
non-linear least squares problem as in the following equation:

X* =arg H}}n Ealign(X). (7)

Gauss-Newton is applied with a linear approximation using a first-order Taylor expansion,
thus obtaining a system of linear equations. To solve the system, the authors used a Precon-
ditioned Conjugate Gradient (PCG) solver with Jacobi preconditioner, applying a GPU-based
parallel approach. By using this approach, the optimization time for the global pose alignment
was significantly reduced.

3.5 Dynamic 3D Reconstruction

The final part of the reconstruction is updating the volumetric scene representation based on the
optimized camera poses, using integration and de-integration techniques. The scene geometry is
constructed by combing the RGB-D data into a truncated signed distance representation (TSDF),
which is defined over a volumetric set of voxels. The authors use the sparse volumetric voxel
hashing approach by Niener et al. [9] to scale the reconstruction, since empty space can be
discarded.

The frames can be both integrated (i.e.added) and de-integrated (i.e.removed) from the TSDF,
which occur as following:
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e Integration of a depth frame D; occurs as following, where each voxel is updated [3] by:

1y POW() +wi(v)di(v) o ,
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e De-integration of a frame is the reversed operation, thus each voxel is updated [3] by:

P = P ) = W) - o)

Therefore, update a new pose in the reconstruction is done by de-integrating the frame from
the original pose and integrating it into a new pose.

4 Results

For real-time scanning, authors used a commodity sensor on an iPad, then the captured RGB-D
stream was send to a desktop machine that runs the algorithm. The completess of the large-scale
indoor scenes, the alignment without camera drift, the high quality of the geometry is also shown in
Fig.2. In comparison with KinectFusion [§], BundleFusion handles loop closures, can recover from
tracking failures and reduces drift, which most ICP frame-to-model methods cannot minimize.

Figure 2: Comparison [3]: BundleFusion outperforms ElasticFusion [II] in terms of scan quality,
accuracy and completeness.
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In terms of performance, authors used for computation two GPUs - NVIDIA GEForce GTX
Titan X and GTX Titan Black, which helps the global dense optimization run in less than 500 ms.

In terms of limitations, misalignments can occur due to the SIFT matches, which can be off by
a few pixels.Treating the keypoints globally would require much more computational time. Also,
live scanning is available just up to 14 minutes, due to the hardware configuration. For longer
sequences, more hierarchy levels would be needed.

5 Conclusion

BundleFusion is a real-time 3D scanning and reconstruction approach with commodity RGB-
D sensors. It optimizes for all the poses globally in real-time using pairwise SIFT features of
RGB-D input frames, enabling a parallel non-linear pose optimization over both sparse and dense
features. The optimized poses update the scene on-the-fly through integration and de-integration.
Thus, BundleFusion’s output is a large-scale consistent and accurate 3D model, whose real-time
reconstruction impresses by quality .
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