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Abstract

This reports presents the paper ”Model globally, match locally: Efficient and robust 3D
object recognition” by Bertram Drost, Markus Ulrich, Nassir Navab and Slobodan Ilic from
2010. Goal of the method presented in the paper is to recognize 3D free-form objects in a
point cloud and recover the pose. The approach uses the advantages of two classes of previous
approaches to introduce a highly efficient and also robust and stable method, which could not
be achieved by those previous methods. This is due to a mapping of the model to a sparse
feature space where faster search in the scene and matching between the model and point
cloud is performed.

Evaluated against other methods the paper shows the advantages in terms of accuracy, speed
and the possibility to trade off both characteristics.

1 Introduction

The paper "Model globally, match locally: Efficient and robust 3D object recognition” [I] from
2010 attacks the issues of recognizing three dimensional free-form objects in point clouds captured
by any sensor. Previous methods used either local point descriptors or a global model description
to recognize objects in the scene. While local approaches are more efficient and accurate compared
to global ones, those methods highly depend on the quality and resolution of the model and the
captured scene. Nevertheless due to the advantages over global approaches, those methods were
quite popular prior this one.

In this method both approaches were combined and a global model described by features is matched
locally to a captured scene recognizing and returning the pose of the model. This global model
description consists of so called oriented [point pair features| which are grouped to map similar
features from a feature space to the model. A quite efficient voting scheme is than used to locally
recognize the model on a sparse 2D search space in the captured point cloud. Besides a quite
efficient search, results show high recognition performance and robustness against noise, occlusion
and clutter compared to state of the art methods.

2 Related Work

Local approaches were the most popular approaches and state of the art when this paper was
published because of their efficiency. Despite their advantages in efficiency those approaches lack
in robustness and stability. Points and their neighborhood in the scene and the model are matched
by so called point descriptors of every point and the surrounding surface. Those descriptors are
matched between scene the model to recover the pose. So it highly depends on the quality of the
captured scene for every point. Therefore noise can be a big problem recognizing points in the
scene. Also occlusion by other objects or clutter capturing the scene could minimize the chance
of matching a point. Changing the area around a point leads to the following results. A smaller
radius leads to a higher dependence on Noise and a bigger radius increased the dependencies on
occlusion.

The second class of methods were global approaches which were not that popular because those
methods were neither very precise nor fast. Those approaches do not focus on a single point and
the surrounding surface but the whole point cloud. One later example is the concept of so called
Surflets [5], which is the combination of to points anywhere in the point cloud and similar to the
concept used here. Also some applications use a “Generalized Hough Transformation”, which is
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similar to the here used voting scheme. Those global applications are limited in some way e.g. to
standard objects like planes, spheres or cylinders and therefore not able to capture 3D free-form
objects. Other need prior segmentation of the scene to use the extracted primitives, which is
computational expensive. And most of the global approaches have in common, that they recover
the pose by all 6 degrees of freedom which leads to high computational efforts. Besides that global
recovered poses have low precision.

3 Method

To counter the disadvantages of both approaches the method combines the advantages of those.
Objects are modeled by global features robust to occlusion and noise. But matching is done
afterwards in a efficient way between local points in the scene and model. The process is described
below:

Point Pair Feature Global Model Description Local Matching Voting Scheme
Hash Table
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Figure 1: Overview of the method ad this section: 1. Point Pair Features; 2. Global Model
Description; 3. Local Matching; 4. Voting Scheme and Clustering afterwards

The global model description consists of so called point pair features, describing a relation
between any two points of the model. The features are stored in a hashing table in the off-line
phase, which can be efficiently accessed. This global description is used in the on-line matching
phase of the scene and the model to recover the pose through local coordinates and reduce the 6D
pose problem to a 3D matching problem consisting od one point and angle.

Matched coordinates of point pairs are accumulated in a voting scheme to refine local coordinates
for a point in the scene. All calculated poses are clustered and averaged, improving accuracy and
return an optimal object pose.

3.1 Point Pair Feature

The scene and model are described by a finite set of oriented
points, consisting of a point and a respective normal. Disad-
vantages of both previous approaches, relying on local surface
information or expensive global methods are avoided by so called
point pair features similar to surflet-pairs introduced by Wahl
[5].

The point pair features describe the relative position and orien-
tation of two oriented points with four arguments:

1. The distance as the absolute value of a distance vector d

between both points Figure 2: Point Pair of two ori-

entated points [1]
2. The Angle between the normal of the first point and the

distance vector

3. The Angle between the normal of the second point and
the distance vector
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4. The Angle between the normlas of points

F(m1= m2) = (| |d||27 é(nh d)? 4(1'127 d)7 é(nlv 1’12)) (1)

The above introduced point pair feature shows an asymmetric property, which guarantees an unique
feature for the exact order of two points.

3.2 Global Model Description

A four dimensional point pair feature F is calculated for any combination of two oriented points
(m;, m;) on the model surface in a off-line phase. To access those point pair features efficiently
and than recover the pose of an object through matching point pairs the global model description
is stored in a hash table. Point pairs with similar features are grouped. Therefore the arguments
of the feature vectors are discretized to daist = 7q - diam (M) for distances and dangle = 2 T/Nangle
for angles. Choosing the parameters 7 and nangle controls the size of the discrete feature space,
which has some benefits described in the Point pairs with similar feature vectors after
discretizing are grouped together and stored in the same slot of a hash table. Each group of point
pairs can be accessed in search efficiently using the discrete feature vectors as a key to the hash
table. So, the global model description is a mapping from the four dimensional point pair feature
space to a set of all point pairs (m;, m;).

3.3 Local Coordinates

To recover the pose of an object points in the scene with
are matched with model points. Therefore an arbitrary
point s,., the reference point in the scene, is picked with
the goal to find the corresponding model reference point
m,. and recover the pose of the model.
In a first step the point pair feature F(s;,s;) of s, and a
random scene point s; is calculated. The feature is than
used to access the global model description and get all
similar point pairs (m,,m;) of the model. (s,,s;) and
(m,.,m;) are aligned through a transformation in the fol-
lowing way.
To get the transformation between the pairs, the refer-
ence points of both point pairs, s,- and m,., are translated
into the origin and the respective normal vectors rotated
Figure 3:  Transformation between g the positive z-Axis of the origin frame through the
model pose and object in the scene [I]  {ransformation matrices Ts—g and Trpsy.

A rotation around the z-axis with « aligns the point
pairs. The complete transformation between the model and the object in the scene, given s,
is described by « and the reference point m,., the local coordinates, reducing the complete search
for all parameters describing the pose to three parameters, compared to six in traditional ap-
proaches.
This method still needs some computational effort to calculate the angles in the on-line matching
phase, which can be reduced doing part of the calculation off-line. In this method this is achieved
by splitting the rotation into o = «,;, — as. The angles describe the rotation of the transformed
point pair of the scene and the model into a plane defined by the x-Axis and the positive part
y-Axis. While «y is still computed on-line for every point pair, «a,, can be computed and stored
for every orientated point pair (m,.,m;), while constructing the global model description
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3.4 Voting Scheme

To increase accuracy and robustness of the local coordinate

(m,, ) the reference point s, is paired with any other point o a
s; of the scene and the local coordinates are calculated. |
To find the optimal local coordinate a two dimensional accumu-
lator array with rows over all model points and columns over
sampled angles is created. After the rotation angle « is calcu-
lated a vote is cast for the local coordinate (m,, ). Voting for
every point pair (s,,s;) in the scene, the peaks in the array de-
scribe the optimal local coordinate and are used to recover the
global pose of the model in the scene. The paper proposes to
increase stability using multiple peaks above a certain threshold. Figure 4: Accumulator Array
of local coordinates with Npoints
rows and ngnpgre columns

3.5 Pose Clustering

The voting scheme described before only uses one reference point in the scene and is based on
the assumption that this point lies on an objects surface. To ensure that a reference point lies
on a models surface and to recognize multiple instances of an object the matching and voting
is performed for multiple reference points. The optimal poses for multiple s, are clustered by
a translational and rotational threshold. For every cluster the votes are accumulated and local
coordinates are averaged. The biggest clusters with the highest scores are returned and describe
the pose of all instances of the model in the scene. Returning the biggest clusters also removes
isolated poses with low scores and increases the accuracy of the method by averaging the poses of
every cluster. Choosing the number of reference points can improve robustness and accuracy or
increase efficiency. This trade off is shown in the evaluation.

4 Evaluation

Goal of the evaluation is to show how the method performs against sets
of synthetic and real data and the up and downsides of this method.
It is compared against other methods, the spin-images by Johnson and
Hebert[2] and tensor matching of Mian etal. [3]. Also the effects on the
method through changing the following parameters is shown:

e 7, the sampling parameter for the discrete distance

e n,ngle, the number of discrete angles Figure 5 Models used

e the number of reference points used for pose clustering for the evaluation [I]

The evaluation is performed on parts of the data set after Mian et al., synthetic and real data
captured by Drost like the clamp shown in [} The default parameters are set to: 7 = 0.05,
Nangle = 30(— AZ = 12deg) and 1/3 of the scene points |S| are used as reference points.

The point cloud of the model and captured scene were sub sampled again, such that the minimum
distance between points dg;ss = 7 - diam(M) and new normals were calculated for those points

5 Results

The first evaluation is performed on synthetic data against ro-

bustness against noise and occlusion. Therefore Gaussian noise

- is added to all points of the scene. In this experiment four

gos different objects are used and each has been captured from 50
oa} directions, resulting in 200 point clouds. The distribution of
K 1234 the noise has been chosen relative to the objects diameter and
added prior to the sub sampling process. A object is counted as
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Figure 6: Noise on a object [I]



Julian Ost Seminar: Recent Advances in 3D Computer Vision

detected if the error of the pose is smaller than a given thresh-
old. The results show robustness to a certain level of noise [l

The second evaluation on synthetic data
shows the influence of the number of reference

1 L - + " " 4
. o e % points used for the pose clustering with respect
-1 r — —He_ ‘ 1 3
e S to the degree of occlusion and clutter. There-
-4 0.6 .
= \\n fore the method acted on 50 scene with four to
g nine objects placed in each. Those influences

02 0.76 sectobject (SPI0) - [ are defined as follows:
o ) 0.35 secfobject {|5[/40) —« ) )
0.7 0.75% 0.8 0.85 0.9 2 . __ model surface area in the scene
Occlusion * Occlusion: 1 total model surface area

. _ model surface area in the scene
e Clutter: 1 total surface area of scene

Figure 7: Recognition rate with respect to occlu-
sion on synthetic data [I] Using the method with |S|/5 reference points
recognized mnearly 90% of all objects, only
highly occluded ones were missed. Setting |S|/40 the method only recognizes 77% of all ob-
jects, but more than 80% for over 15% visible objects were detected and the computation was 4
times faster. So changing number of the reference points used for pose clustering lowers recog-
nition rate but increases speed. A trade off between both is possible through this parameter.
The comparison of the method with the methods Tensor Matching, using multidimensional table
representations of the model (Mian et al.[3]), and Spin images, matching surfaces represented as
a rotational projection around normal vectors (Johnson and Herbert [2]), was performed on real
data of 50 scenes by Mian w.r.t. clutter and occlusion.
Besides comparing to both other methods, the influence and benefit of varying the sampling rate
T4 can be shown [§l For 7 = 0.025 this method performed alike the tensor matching and both a
lot better than spin images. The recognition rate of this method increased slightly and performed
as fast as the method of Mian et al. Increasing 7 to 0.04 the method still performed significantly
better than the spin images for objects which were less than 15% occluded but worse compared to
tensor matching. Nevertheless the matching is performed 40 times faster, which shows the main
advantage of this method: It is possible to trade between speed and recognition rate.
The presented method has been analyzed qualitatively on actual captured data by Drost to show
useability in real scenarios e.g. robotics. The Experiments on a self-build laser scanning setup
showed accurate results for object manipulation despite a lot of clutter and occlusion.

6 Summary

The paper introduced an efficient, stable and ac-
curate method to find free-form 3D objects in . : : : :

point clouds, which is independent from local e

surface information and also very fast matching sk ~ x\
through locally reduced search space. Also bet- - N
ter recognition rates where achieved in compari- g er - \

.o . c \.“
son to traditional local and global approaches. A g oal \ |
main advantage of this method is a possible trade \

0z | Our methaod, 1=0.025 (85 sec/obj) ‘
between accuracy and speed through several pa- sorensor matching of Man et al. 190 seciobl) —o—
rameters. 0 . | Our method, T=0.04 (1.97 secfobj)
. . 65 70 75 80 a5
Although the method was introduces in 2010 a % occlusion

recent paper by Vidal [4] from 2018 shows the

best performance for pose estimation in 3D point  Figure 8: Recognition rate w.r.t occlusion on
clouds with this method and successors. Further real data compared to Tensor Matching, Spin
improvement in computational speed through a Images and different parameter 7 [

faster implementation in C++ and palatalization

e.g. of calculating local coordinates and several reference points has been proposed. Accuracy could
also be improved by redefining the poses with e.g. ICP.
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