Model globally, match locally: Efficient and robust 3D object recognition

Bertram Drost, Markus Ulrich, Nassir Navab, Slobodan Ilic

Julian Ost

Technische Universität München

Garching, 25. June 2019

Free-Form 3D Object Recognition

Example of two partly occluded instances of an object in a 3D point cloud

Global Approach

Only detect standard shapes e.g. planes, cylinders and spheres;

Or require segmentation of the scene e.g. recover pose from primitives.

Recover 3D pose with 6 degrees of freedom.

- No free form 3D objects
- Low precision
- Computationally expensive

Wahl et al. introduced "surflets" a two-point feature (similar to this method)

Local Approach

- 1. Identification of possible point to point correspondences of model and scene
- 2. Grouping correspondences and recover pose

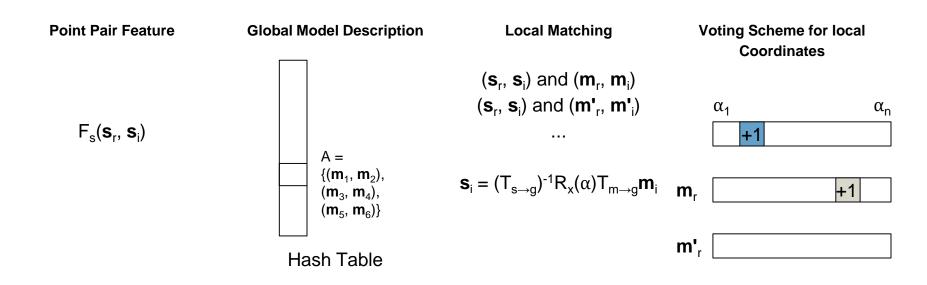
Point descriptors: Describe the surface around a point

Quite efficient, but:

- Depends on local surface information (e.g. clutter, occlusion, ...)
- Is related to data quality and resolution (e.g. noise)

Method Overview

Combining global feature based model description and a local matching



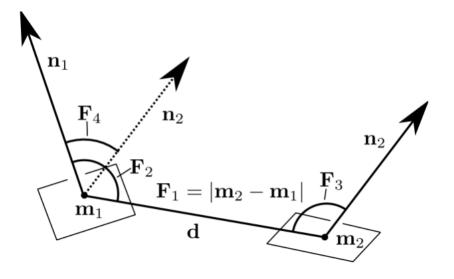
Point Pair Feature

 $\mathbf{F}(\mathbf{m}_1, \, \mathbf{m}_2) = (|\mathbf{d}|_2, \, \angle(\mathbf{n}_1, \, \mathbf{d}), \, \angle(\mathbf{n}_2, \, \mathbf{d}), \, \angle(\mathbf{n}_1, \, \mathbf{n}_2))$

Describes the relative position and orientation of two orientated points

Asymmetric property guarantees uniqueness for sequence of points

Offline: Creating the global model description Online: Finding the object in the scene



Global Model Description

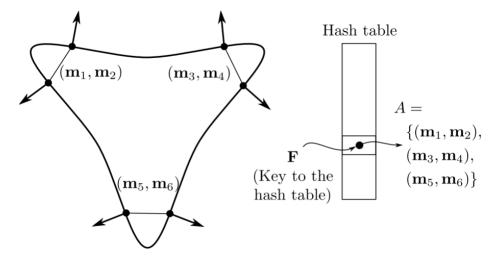
Representation as a set of point pairs (m_i, m_j)

Point pair features **F** for all point pairs on the model surface M

Discretization of feature vectors:

- $d_{dist} = \tau_d \cdot diam(M)$
- $d_{angle} = 2\pi / n_{angle}$

Equal discrete vectors are grouped in hash table indexed by the feature



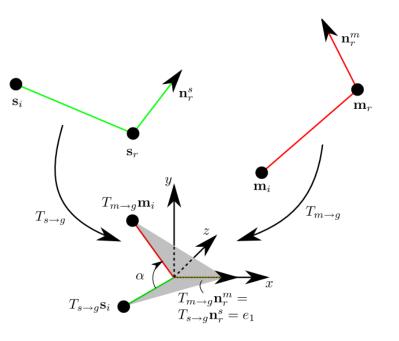
Local coordinates

Assumption: Any arbitrary \mathbf{s}_{r} on the object from the scene corresponds to a point \mathbf{m}_{r} on the model

Matching model and scene - **local coordinates**: \mathbf{m}_{r} , α (reduces the problem to three dimension)

Alignment of $(\mathbf{s}_{r}, \mathbf{s}_{i})$ and $(\mathbf{m}_{r}, \mathbf{m}_{i})$ with similar **F**

$$\mathbf{s}_{i} = (T_{s \rightarrow g})^{-1} R_{x}(\alpha) T_{m \rightarrow g} \mathbf{m}_{i}$$



Efficient Looping

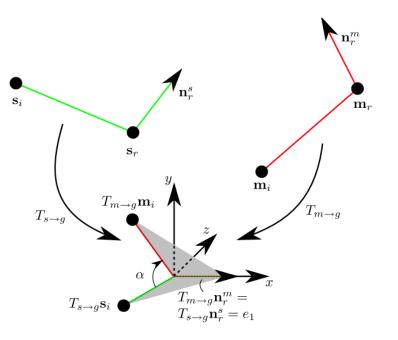
 $\alpha = \alpha_{\rm m} - \alpha_{\rm s}$

 $\alpha_{\rm m}$ can be pre calculated off line

 $\alpha_{\rm s}$ needs to be calculated only once for every (${\bf s}_{\rm r}, {\bf s}_{\rm i}$)

$$\mathbf{t} = \mathsf{R}_{\mathsf{x}}(\alpha_{\mathsf{s}})\mathsf{T}_{\mathsf{s}\to\mathsf{g}}\mathbf{s}_{\mathsf{i}}$$

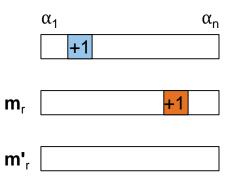
= $\mathsf{R}_{\mathsf{x}}(\alpha_{\mathsf{m}})\mathsf{T}_{\mathsf{m}\to\mathsf{g}}\mathbf{m}_{\mathsf{i}} \in \mathsf{R}\mathbf{x} + \mathsf{R}_{\mathsf{0}}^{+}\mathbf{y}$



Voting Scheme

Find the best local coordinates for a given \mathbf{s}_{r}

- $\mathbf{F}_{s}(\mathbf{s}_{r}, \mathbf{s}_{i})$ for every point pair as key to the hash table
- Local coordinates m_r, α of every match (m_r, m_i)
- Voting Scheme on two dimensional array representing the discrete space for a fixed s_r
 - \rightarrow Peaks in the accumulator array: **Optimal local coordinate**



Pose Clustering

Filter incorrect poses (e.g. \mathbf{s}_{r} not on object) and increase accuracy

- Optimal poses for multiple \mathbf{s}_r are clustered given translational and rotational threshold
- Per Cluster: Votes are accumulated and poses averaged
- Return (multiple) clusters with the highest score for (multiple) objects in the scene

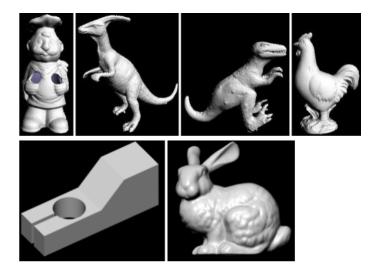
 \rightarrow Removes isolated poses with low scores and increases acc. by averaging poses

Evaluation

Test performance, efficiency and dependence on parameters:

- τ_d
- n_{angle}
- number of reference points (as percentage of subsampled scene points)

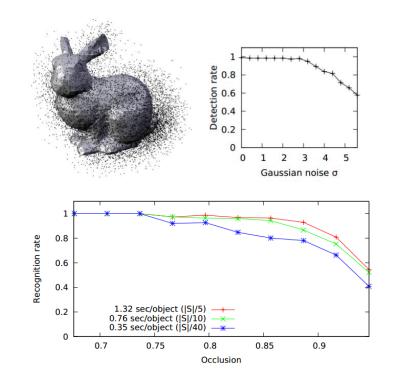
Evaluation against synthetic and real Data



Result Synthetic Datasets

- 1. Single Object and gaussian noise
 - Distance and angle threshold for detection rate

- w.r.t. to occlusion
- and Number of reference points in the scene
- \rightarrow Trade Off between speed and performance

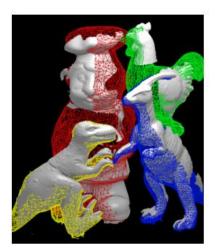


Real Data - Quantitative

Evaluated on 50 scenes by Mian et al.

Evaluated against:

- *Tensor Matching*: Multidimensional table representations of the model (Mian et al.)
- Spin images: Match surfaces represented as surface meshes (Johnson and Herbert)

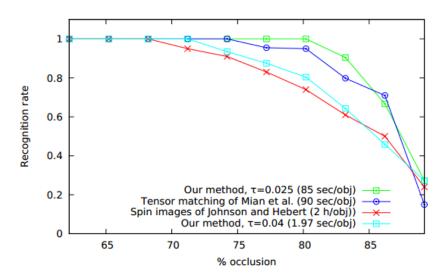


Variation of the sampling rate $\tau_{\rm d}$

Evaluated w.r.t. clutter and occlusion

Real Data - Quantitative

- Slightly increased the recognition rate at same speed
- For lower sampling rate: A bit worse recognition rate but 40 times faster matching
- Main Advantage of this method: Trade off between speed and recognition rate



Real Data - Qualitative

Experiments on self-build laser scanning setup showed accurate enough recognition for object manipulation despite a lot of clutter and occlusion



Conclusion

- Efficient, stable and accurate method to find free-form 3D objects in point clouds
- Independent from local surface information
- Very fast matching through locally reduced search space
- Better recognition rate in comparison to traditional approaches

- C++ implementation and parallelization could speed up matching times
- Refinement of poses with e.g. ICP could increase detection rate