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Abstract

This report presents PPF-FoldNet, a novel unsupervised approach for 3D local feature ex-
traction. Based on previous works, such as PointNet, FoldingNet and PPFNet an autoencoder
structure is built by adapting PointNet’s architecture as encoding part of the network and
using folding operations as a decoder alternative. Input data in the form of a point cloud is
transformed into a local patch representation based on point pair features. Using point pair
features as input to our network makes the approach invariant to 6DoF transformations. The
new method is tested on the well-known 3DMatch Benchmark Dataset and outperforms other
state-of-the-art methods, learning-based and handcrafted ones, in terms of recall by at least
6%. This margin even increases if rotations are present in the input data. Compared to other
methods, PPF-FoldNet yields a 20% higher recall on a randomly rotated dataset. Due to
good generalization properties, PPF-FoldNet could be easily extended to other tasks, such as
classification or object pose estimation.

1 Introduction

Many computer vision applications use local descriptors as tools in tasks as object detection, pose
estimation or Simultaneous Localization and Mapping (SLAM). While methods are today well
established for 2D problems, there are still a lot of issues to deal with in 3D local feature extraction.
Most methods still lead to features that lack good discriminative power and repeatability [1].
Like in many other applications, current research tries to face these problems by using learning-
based approaches. In 2D, learned descriptors are already able to outperform handcrafted feature
extraction algorithms. But unlike in 2D, learning local features in 3D so far has still suffered from
several shortcomings [1]. These are:

• being supervised and thus requiring an enormous amount of labeled training data

• sensititivity to 6DoF rotations

• requiring expensive pre-processing of data

• unsatisfactory performance

Haowen Deng, Tolga Birdal, and Slobodan Ilic, the authors of PPF-FoldNet: Unsupervised Learning
of Rotation Invariant 3D Local Descriptors introduce a new approach, PPF-FoldNet, to tackle
the previously listed problems of 3D feature learning by using an unsupervised approach based
on an autoencoder structure operating on rotation invariant point pair features as input to the
neural network. This report will name related work that PPF-FoldNet is based on and give a short
description of the introduced method before showing experimental results on a common benchmark
dataset, 3DMatch Benchmark. The report will conclude with a short summary and an outlook for
possible extensions.

2 Related Work

The development of PPF-FoldNet is mainly based on three different related learning-based ap-
proaches for 2D feature extraction, namely PointNet (Stanford University 2017, [6]), FoldingNet
(Carnegie Mellon University 2018, [10]) and PPFNet (TUM 2018, [2]). For the novel approach,
the best attributes of these three have been combined and adapted to build up the structure of

1



Simon Boche PPF-FoldNet: Unsupervised Learning of Rotation Invariant 3D Local Descriptors

PPF-FoldNet (TUM 2018). In the following, a brief overview of the basic concepts of these three
approaches is given.

PointNet: PointNet is a supervised architecture processing input data in the form of un-
structured 3D point clouds. Its architecture consists of a point-wise multi-layer perceptron (MLP)
using max pooling operations to aggregate local features into a global one. Max poling effectively
makes the network learn a set of criteria that selects interesting or informative points of the point
cloud [6]. PointNet can be adapted to a wide range of tasks such as keypoint extraction, 3D
segmentation and classification.

FoldingNet: Like PointNet, FoldingNet also works on point clouds as input but in contrast
to PointNet, it constructs an unsupervised extension by setting up an autoencoder structure.
Learning to reconstruct its input allows us to export a low-dimensional latent variable in the neu-
ral network as a local descriptor of a set of points. The novel approach in FoldingNet was the
use of folding operations in the decoding part of the network. Instead of costly interpolations or
voxelizations, folding tries to warp an underlying low-dimensional grid towards a desired set [1].
By the time FoldingNet was introduced it significantly outperformed other state-of-the-art unsu-
pervised approaches [10].

PPFNet: PPFNet is again a supervised approach but instead of working on pure point clouds
it combines point pair features with points and their normals within a certain local vicinity. It
proposes to learn local features informed by the global context of the scene. To achieve this, it is
seeking to find correspondences between all patches of two fragments. The authors of [2] were able
to show that their novel globally aware 3D descriptor was performing better than state-of-the art
feature extraction methods, especially under challenging conditions, e.g. in presence of rotations.
However, PPFNet had one big downside, it showed a significant memory bottleneck.

3 Method description

The method to be presented, PPF-FoldNet aims to combine the best properties of the afore-
mentioned developments and therefore is using only point pair features as input and is operating
without supervision.

3.1 Construction of Point Pair Features (PPFs)

Figure 1: Visualization of point pair features [8].

We usually obtain our input point cloud as a
set of oriented points

X =
{
xi : xi = {pi,ni} ∈ R6

}
including the 3D coordinates xi of each point
and its corresponding surface normal ni. From
that, we create subsets, so-called local patches,
containing all points that are within a certain
vicinity of a reference point xr. Each local
patch can then be encoded as a collection of
PPFs by computing point pairs between any
point and the central reference point. Each of
these point pairs is then uniquely defined by 4
parameters Fi. These parameters are illustrated in Figure 1 for an arbitrary point pair {m1,m2}
and are: the distance ||d||2 between the two points (F1), the angles between the distance vector
and each normal (F2, F3) and the angle between the two normals (F4). This representation is
invariant to rigid body transformations.
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Figure 2: Network architecture of PPF-FoldNet [1].

3.2 Network Architecture

PPF-FoldNet builds up an autoencoder structure by adapting and using PointNet in the Encoder
and FoldingNet in the Decoder. The overall architecture is shown in Figure 2. After having
computed the 4D PPFs, our input of dimensions N × 4, with N being the number of samples
per local patch, is passing a three-layer point-wise neural network with ReLu activation functions
followed by a max pooling layer to create a global feature out of the local features. Via skip links
in each layer, our global features are concatenated with low-level ones to obtain a more powerful
representation. Another two-layer perceptron and an additional max pooling layer finally lead to
our latent variable, the codeword, a vector of 512 elements which will be our encoded descriptor
for the local patch.
The decoding part of the architecture basically consists of two folding operations, each followed by
a five-layer perceptron. More precise, the codeword is replicated M times and concatenated with
an M × 2 grid before passing a five-layer perceptron. For the second folding operation, the output
of the first MLP is then again concatenated with the replicated codeword and fed into another
five-layer MLP. With the dimension of the last layer being 4, this leads to an output of dimensions
M × 4 which represents our reconstructed point pair features. To finally train our network, we
need to set up a loss function that we can evaluate between the input PPFs (N × 4) and the
reconstructed ones (M × 4). To do so for sets of unequal cardinality, we use the Chamfer Loss
which is given by:

d
(
F, F̂

)
= max

 1

|F|
∑
f∈F

min
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2
,

1

ˆ|F|
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∣∣∣∣∣∣f − f̂
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2

 (1)

for two sets F and F̂. This can be interpreted as calculating the average euclidean distance between
each point of the first set to its nearest neighbor in the second set and vice versa. We, then take
the maximum of those two distances.

4 Experiments and results

The presented algorithm has been implemented using Tensorflow framework accelerated on GPU.
All parameters have been initialized randomly by Xavier’s algorithm. For minimization, an ADAM
optimizer with exponentially decaying learning rate has been used on batches of size 32 [1].
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4.1 Data preparation

For evaluation of experimental results and comparison against other methods, the 3D Match Bench-
mark, provided by Princeton University, is used. This benchmark contains a total of 62 different
scenes with fragments fused from 50 consecutive depth frames [11]. Out of these scenes, 54 are
reserved for training and validation and the remaining 8 are used for testing. Additionally, the
color information is omitted such that the network becomes insensitive to illumination changes.
To construct PPFs for the network, the fragments are downsampled with spatial uniformity and
local patches are formed by all points within a 30 cm vicinity of the reference points. The corre-
sponding normals are computed in a 17-point neighborhood according to the approach by Hoppe
et al. [3] based on signed distance functions. For a fair comparison with state-of-the-art methods,
the local patches are limited to 2048 points, although it can be easily extended as it does not suffer
from the memory bottleneck of PPFNet. Therefore, the developers of PPF-FoldNet also provide a
version using 5000 points.

4.2 Accuracy evaluation

Given a pair of fragments P = {pi ∈ R3} and Q = {qi ∈ R3} that can be aligned via a rigid
body transformation T ∈ SE(3), we can define a set of ground-truth matches MGND by setting
an inlier distance threshold τ1 such that:

MGND = {{pi,qi} : (pi,qi) ∈M, ||pi −Tqi||2 < τ1} (2)

The set of feature matches obtained from the network M is obtained by using nearest neighbor
search NN(·, ·) in the feautre space.

M = {{pi,qi} : g (pi) = NN (g (qi) , g (P)) , g (qi) = NN (g (pi) , g (Q))} (3)

where g(·) is the learned mapping function from input space to feature space (encoding part of the
network). Furthermore, we define the inlier ratio rin as percentage of true matches in M.

rin =
|MGND|
|M|

(4)

We demand rin to be higher than a specified inlier ratio threshold τ2 for a correct match of two
fragments. With these definitions, we introduce the recall R as a measure for the quality of features.
For a set of fragment pairs S = {P,Q}, assumed to match under ground-truth alignment, the recall
is given by:

R =
1

|S|

|S|∑
i=1

1 (rin (Si = (Pi,Qi)) > τ2) (5)

In equation (5) the number of fragment pairs that have a sufficiently large inlier ratio are counted
and divided by the total number of fragment pairs such that the recall R finally yields the per-
centage of correctly detected matches out of all true matches.

4.3 Results

The performance of features obtained from PPF-FoldNet is evaluated and compared against a va-
riety of other methods including state-of-the-art learning based methods (3DMatch [11], CGF [5],
PPFNet [2] and FoldingNet [10]) as well as handcrafted features (Spin Images [4], SHOT [9] and
FPFH [7]). Initially, we fix the inlier distance threshold to τ1 = 10 cm and the inlier ratio thresh-
old to τ2 = 5 %.
The results show, that in this setup for single scenes other methods might have a higher recall
but on average, PPF-FoldNet yields a recall of approximately 68 % which outperforms all other
methods by at least 6 %. Additionally, using the extended version with patches of 5000 points, one
can obtain a further improvement of 3 %. To investigate the impact of the parameters τ1 and τ2
on the performance of all methods, the experiments are once repeated with varying inlier distance
threshold τ1 (while fixing τ2 = 5 %) and once with varying inlier ratio threshold τ2 (while fixing
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Figure 3: Variation of τ1
Figure 4: Variation of τ2 Figure 5: Rotated fragments

τ1 = 10 cm). The results are shown in Figure 3 and 4. One can observe, that for strict inlier
distance requirements (below 12 cm), PPF-FoldNet yields the highest recall of all methods that
have been compared. For higher choices of τ1, only PPFNet produced better results. The variation
of τ2 in a range of 0 - 20 % shows that when increasing the threshold for the inlier ratio above 5 %,
PPF-FoldNet outperforms all other methods and the gap between its recall and the other methods
is even growing the larger τ2 becomes. Especially, for the maximum of 20 %, PPF-FoldNet is still
able to match more than 20 % of fragments whereas all other approaches are hardly able to match
any fragments.
As the goal of the authors of [1] is to learn rotation invariant local descriptors, two more exper-
iments have been executed to test the robustness of the introduced approach against rigid body
transformations. In a first test, random fragments have been taken and gradually rotated around
the z-axis from 60◦ to 360◦ in steps of 60◦. The resulting recall values are shown in Figure 5.
One can observe two things. First, while some methods like PPFNet or 3DMatch more or less fail
completely, PPF-FoldNet yields an almost constant recall over the whole range of rotations. And
second, it outperforms all methods, even those who are also rotation invariant, by a large margin.
A second test on rotation invariance is done by introducing a new benchmark, the Rotated 3D
Benchmark, which is obtained from regular 3D Benchmark by rotating all fragments around ran-
domly sampled axes over the whole rotation range. On this benchmark, some of the previously
mentioned approaches fail completely. For example, 3DMatch and PPFNet have recall values
around 1 % or even lower. In contrast, PPF-FoldNet is barely impacted and achieves the best
results on all scenes with an average recall of 69 % (73 % for extended 5K network). These results
are nearly identical to the results on the standard benchmark.

5 Conclusion

With PPF-FoldNet, a novel unsupervised approach for learning of 3D local descriptors has been
introduced. It combines the best attributes of previous developments, especially PointNet, Fold-
ingNet and PPFNet. Building blocks towards its outstanding performance are the ability to operate
on sparse input data, a property inherited from PointNet, folding operations in the decoder and
the use of PPFs which in the end make the approach invariant to 6DoF transformations.
In several experiments, it has been shown that the introduced method outperforms state-of-the
art feature extraction methods, learning based as well as handcrafted ones, on standard bench-
mark datasets under challenging conditions and varying point cloud density. Compared to other
methods that also operate on point pair features, PPF-FoldNet is able to result in a far higher
recall. Besides of achieving a superior performance, the network is interpretable as the point pair
features can visualized during the training progress. Therefore, a geometrical projection of the
4D PPFs into a 2D space based on polar coordinates is used. Some further benefits are a better
computational performance in terms of time compared to other methods [1] and the fact that it can
be easily extended to larger patches without running into memory issues. As it can furthermore be
shown that PPF-FoldNet has good generalization properties, it offers a broad range of applications
for possible extensions in the futures. Exemplary for this, the features could be adapted to tasks
like classification or pose estimation.
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