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Introduction

Color constancy problem - Decomposing an image into illuminant color and surface color.
Intrinsic images problem - Decomposing a single image into its constituent shape, reflectance and illumination etc.

SIRFS(shape, illumination and reflectance from shading) - The first unified model for recovering shape, chromatic
illumination, and reflectance from a single image.

Reflectance - effectiveness of the surface in reflecting the radiant energy.
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Problem formulation

Assume Lambertian reflectance model, so | = R + S(Z,L). log Intensity (l) is observed and S is
defined.

mipimise g(R)+ f(Z)+ h(L)

subjectto [ =R+ S5(Z,L)
g(R) - cost of reflectance R

f(Z) - cost of shape Z
h(L) - cost of illumination L

Write R = | - S(Z,L) and minimise the unconstrained optimization problem to produce depth map
Z’, and illumination L'. Then calculate R'=1- S(Z',L).



Reflectance

Our prior on reflectance has three components:
9(R) = Asgs(R) + Acge(R) + Aaga(R)

A are the weights learned using cross-validation

g.(R) - prior on local smoothness

g,(R) - prior on global entropy of reflectance

g,(R) - absolute prior on each pixel to address color constancy
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Reflectance smoothness

The prior on reflectance smoothness is a multivariate Gaussian scale mixture (GSM) placed on
the differences between each reflectance pixel and its neighbours.

K
gs(R)=> "> log (Y arN (Ri—R;;0.0:X)

i JEN(3) k=1

N(i) is the 5 x5 neighbourhood around pixel i, R; — Rj is a 3-vector of the log-RGB differences

from pixel i to pixel j, k = 40 (the GSM has 40 discrete Gaussians), X is the covariance matrix of
the entire GSM. o and o are the coefficients of the GSM. GSM is learned using the training data.

(a) Our GSM (b) R - a proposed (C) ga(R) - cost under (d) Vg:(R) - influence

smoothness prior reflectance image our model under our model



Global entropy

Assume reflectance image of a single object is clustered in RGB space.
We minimize the multivariate Quadratic entropy of the reflectance image.

Entropy function should be anisotropic to take care of separate RGB channels.
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ge(R) = —log | ) > exp (— g
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W is the whitening transformation learned from training reflectance images. o, is tuned through cross-validation.

Ae:

(a) Correct Everything (b) Wrong Shape (C) Wrong Light
ge(R) = 0.913 ge(R) = 1.325 ge(R) = 2.366



Absolute Colour

Assume not all colours are equally likely.
Impose prior on absolute reflectance - log RGB values of each pixel.

Fit a 3D thin-plate spline (TPS) to the distribution of whitened log RGB values.

minimize E Fiik-Nijr | +1og E exp (=Fqi k) | + MW/ J(F) + €2
F J? 3J? 2J )
i,k i,k

N T2 2 2 2 2 2
J(F)=F2, + F2, +F2, +2F2 1 2F% 4 2F2

F is a 3D TPS describing cost, N is a 3D histogram of the whitened log-RGB reflectance in our
training data, and J() is the TSP bending energy cost.

The smoothness multiplier 4 is tuned through cross-validation.
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During inference, we maximize the likelihood of the reflectance image R by minimizing its cost under our learned model

9a(R) = ) F(WR:)

where F(WR) is the value of F at the coordinates specified by the 3-vector WR, the whitened reflectance at pixel i.

Random Samples
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(a) Training reflectances (b) Our PDF of reflectance (C) Reflectances sorted by cost



lllumination

Global lllumination is modelled with spherical harmonics.
Cost function of our model:

ML) =AL(L—pp) (L — pr)

where u; and X; are the Gaussian parameters which we learned and 4 is learned through cross-
validation.
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Prior on shape

Prior on shape is a linear combination of the following terms

f(Z) = ’\fff(Z) + Aefe(Z) + A fr(Z)
J{(Z) is a flatness term,

fC(Z) encourages shapes to face outwards at the boundaries
fi(Z) is a smoothness term.
A are learned through cross-validation.
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Flathess

The prior prefers a flat shape, by minimising the slant of Z.
= -3 g (20:,/(2)
Where Nf,y (Z) is the z-component of the surface normal of Z at position (X, y).

If we have observed a surface in space, it is more likely that it faces the observer(Nf,y=1) than
that it is perpendicular to the observer (Nf’y = 0).
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Occluding boundary

We minimise the following cost function.

Z\/ ) —n%) + (N¥(Z) — n¥)’

ieC
N is the surface normal on the depth map Z, and #» is local normal to the occluding boundary in
the image plane.
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Variati f t

The prior penalises change in mean curvature.

fx(Z) Z Z log (Zau —H(Z), O,ak)>

t jEN(2)

where N(i) is the 5x5 neighborhood around pixel i, H(Z); is the mean curvature of shape Z,
H(Z), — H(Z)j is the difference between the mean curvature at pixel i and pixel j, k = 40 (the

GSM has 40 discrete Gaussians), a and o are the coefficients. The GSM is learned using the
training set.
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Optimization

Straightforward gradient-based optimization (L-BFGS) fails, and coarse-to-fine works poorly.

Instead, we optimize over , a Laplacian pyramid L(X,h) where X is the variable to be optimised
and h is the filter.

&, Vy €l = f(Y) J/ compute loss with respect to pyramid
X < L7%(Y,h) // reconstruct the signal from the pyramid

0,V xt] + f(X) // compute the loss and gradient with respect to the signal
Vyl + G(VxE, h) // backpropagate the gradient onto the pyramid

solve for X = £~ (argminy f'(Y), k) using L-BFGS.
h is a binomial filter of length 5 and the filter that worked bestis h =1, 4, 6, 4, 1]/(4\/5).
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Image & Il- Truth Model Malik al.2011 [7] | al. 2011 [8] | al.2005 [9] 10] +
lumination 2012A 1] + SFS [1] + SFS [1] + SFS [1) SFS [1]

Comparing the proposed model with different models for Laboratory illumination
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Comparing the proposed model with different models for Natural illumination
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Evaluation of the algorithm on Laboratory illumination and natural illumination datasets with known
and unknown illumination.

Laboratory Illumination Datasot Natural [llumination Datasot
Known Illumination Known Illumination
Algarithm IN-MSE 3-MSE r-MSE rs-MSE L-MSE“ Avg. Algonithm N-MSE s-MSE r-MSE rs-MSE L-MSE|| Avg.
Flat Baseline 06141 00572 0.0452 Flat Baseline 0.6141 0.0246 00243 0.0125 .
Retinex (2, 5] + SFS [1) 08412 0.024 0.0186 00163 - 00477 Retinex [2.5] + SFS (1] 04258 00174 0.0174 0.0083 0.0322
Tappen ef ol 2006 [14] + SFS (1] | 0.7062 0.0361 0.0379 0.0347 - 0.0760 | Tappen et ol 2006 [14] + SFS [1) 0.6707 0.0255 0.0280 0.0268 0.0699
Shen et al 2011 [15] + SFS [1) 09232 0.0528 0.0M38 0.0298 - 0.0971 | Gehler et ol 2011 [12]| + SFS [1) 0.5549 0.0162 0.0150 0.0106 0.0346
Gehler et al. 2011 [12]| + SFS [1] 06342 0.010¢ 00101 0.0131 - 0.0307 | Gehler et al_ 2011 [12] + [11] + SFS [1]| 0.6282 0.0163 0.0164 0.0106 0.0365
Barron & Malik 20124 (1) 0.2032 0.0142 0.0160 0.0181 - 0.0302 | Barron & Malik 2012A (1) 0.2044 0.0092 00094 0.0081 0.0195
Shape from Contour [1) 02464 0.020¢ 0.0M12 0.02309 - 0.0652 | Shape from Contour (1) 0.2502 0.0126 0.0163 0.0106 0.0271
Our Model (Complete) 02151 00066 00115 0.0133 - 00215 | Our Modd (Complete) 0.0867 0.0022 0.0017 0.0026 0.0054
Unknown Illumination Unknown Illumination

Barron & Malik 2012A [1) 01975 0.0194 00224 0.0190 0.0247 || 0.0332 | Barron & Malik 2012A (1) 0.2172 0.01923 00188 0.0094 0.0206 || 0.0273
Our Model (RGB) 02818 0.0090 D.0118 0.0149 0.0098 || 0.0213 | Our Modd (RGB) 0.2373 0.0086 00072 0.0065 0.0104 || 0.0159
Our Model (YUV) 02906 0.0110 0.0171 0.0182 0.0126 || 0.0263 | Our Modd (YUV) 0.3064 0.009¢ 00088 00072 0.0110 ||0.183
Our Model (No Light Priors) 05215 0.0301 0.0273 0.0285 0.2059 || 0.0758 | Our Modd (No Light Priors) 0.3722 0.0141 00149 00118 0.1491 || 0.0424
Our Model (No Absolute Prior) 03261 0.0124 0.0195 0.0189 0.0166 || 0.02301 | Our Modd (No Absolute Prior) 0.1914 0.0124 0.0106 00035 0.0136 || 0.0165
Our Model (No Smoothness Prior)| 02727 0.0106 0.0179 0.0223 0.0125 || 0.0270 | Our Modd (No Smoothness Prior) 0.2700 0.0084 00071 0.0065 0.0090 || 0.0157
Our Model (No Eatropy Model) 02865 0.0109 0.0161 0.0152 0.0141 || 0.0255 | Our Modd (No Entropy Prior) 0.2911 0.0080 00067 00054 0.0100 || 0.0155
Our Model (White Light) 02221 0.0082 0.0112 0.0136 0.0085 || 0.0188 | Our Modd (White Light) 0.6268 0.0211 0.0207 0.0089 0.0647 || 0.0437
Our Model (Complete) 02793 0.007s 0.0118 0.0144 0.0100 || 0.0206 | Our Modd (Complete) 0.2348 0.0060 0.0M9 0.0042 0.0084 ||0.0119




THANK YOU
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