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Color constancy problem - Decomposing an image into illuminant color and surface color. 

Intrinsic images problem - Decomposing a single image into its constituent shape, reflectance and illumination etc. 

SIRFS(shape, illumination and reflectance from shading) - The first unified model for recovering shape, chromatic 
illumination, and reflectance from a single image. 

Reflectance - effectiveness of the surface in reflecting the radiant energy. 
    

                             !  

Introduction
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Assume Lambertian reflectance model, so I = R + S(Z,L). log Intensity (I) is observed and S is 
defined.  

!  
 g(R) - cost of reflectance R 
 f(Z) - cost of shape Z 
 h(L) - cost of illumination L 

Write R = I - S(Z,L) and minimise the unconstrained optimization problem to produce depth map 
Z’, and illumination L’. Then calculate R’ = I - S(Z’,L’). 

Problem formulation
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Our prior on reflectance has three components: 

!  
!  are the weights learned using cross-validation 
!  - prior on local smoothness 
!  - prior on global entropy of reflectance 
!  - absolute prior on each pixel to address color constancy 

λ
gs(R)
ge(R)
ga(R)

Reflectance
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The prior on reflectance smoothness is a multivariate Gaussian scale mixture (GSM) placed on 
the differences between each reflectance pixel and its neighbours.                      

!  
! (i) is the 5 x5 neighbourhood around pixel i, !  is a 3-vector of the log-RGB differences 
from pixel i to pixel j, !  = 40 (the GSM has 40 discrete Gaussians),  !  is the covariance matrix of 
the entire GSM. !  and !  are the coefficients of the GSM. GSM is learned using the training data. 

!  

N Ri − Rj
k Σ

α σ

Reflectance smoothness
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Assume reflectance image of a single object is clustered in RGB space.  

We minimize the multivariate Quadratic entropy of the reflectance image. 

Entropy function should be anisotropic to take care of separate RGB channels.  

!  
W is the whitening transformation learned from training reflectance images. !  is tuned through cross-validation. 

!  

σe

Global entropy
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Assume not all colours are equally likely. 
  
Impose prior on absolute reflectance - log RGB values of each pixel. 

Fit a 3D thin-plate spline (TPS)  to the distribution of whitened log RGB values. 

!  

                  !  

F is a 3D TPS describing cost, N is a 3D histogram of the whitened log-RGB reflectance in our 
training data, and J() is the TSP bending energy cost.  
The smoothness multiplier !  is tuned through cross-validation. λ

Absolute Colour
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During inference, we maximize the likelihood of the reflectance image R by minimizing its cost under our learned model 
          

        !  
where F(WR) is the value of F at the coordinates specified by the 3-vector WR, the whitened reflectance at pixel i. 

!  
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Global Illumination is modelled with spherical harmonics. 
Cost function of our model: 

               !  
where !  and !  are the Gaussian parameters which we learned and !  is learned through cross-
validation. 

!  

μL ΣL λ

Illumination
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Prior on shape

Prior on shape is a linear combination of the following terms 

        !  
 !  is a flatness term,  

!  encourages shapes to face outwards at the boundaries 
 !  is a smoothness term.  
!  are learned through cross-validation.

ff(Z)
fc(Z)
fk(Z)
λ
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Flatness

The prior prefers a flat shape, by minimising the slant of Z. 

!  
Where !  (Z) is the z-component of the surface normal of Z at position (x, y). 

If we have observed a surface in space, it is more likely that it faces the observer(! =1) than 
that it is perpendicular to the observer (!  = 0).

Nz
x,y

Nz
x,y

Nz
x,y
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Occluding boundary

We minimise the following cost function. 

           !  
!  is the surface normal on the depth map Z, and !  is local normal to the occluding boundary in 
the image plane.
N n
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Variation of mean curvature

The prior penalises change in mean curvature. 

!  
where ! (i) is the 5x5 neighborhood around pixel i, !  is the mean curvature of shape Z, 
!  is the difference between the mean curvature at pixel i and pixel j, !  = 40 (the 
GSM has 40 discrete Gaussians), !  and !  are the coefficients. The GSM is learned using the 
training set.

N H(Z)i
H(Z)i − H(Z)j k

α σ
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Straightforward gradient-based optimization (L-BFGS) fails, and coarse-to-fine works poorly. 

Instead, we optimize over , a Laplacian pyramid ! (X,h) where X is the variable to be optimised 
and h is the filter. 

!  // compute loss with respect to pyramid 

!  
!    
h is a binomial filter of length 5 and the filter that worked best is h = [1, 4, 6, 4, 1]/(4! ). 

L

2

Optimization
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!      !  
•         Laboratory illumination dataset                                Natural illumination dataset
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Results



!  
       Comparing the proposed model with different models for Laboratory illumination  

!  
       Comparing the proposed model with different models for Natural illumination  

!16



!17

Evaluation of the algorithm on Laboratory illumination and natural illumination datasets with known 
and unknown illumination.   



       

                       THANK YOU
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