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Abstract

The introduction of consumer based RGBD scanners set off a major boost in 3D computer
vision research. Yet, the precision of existing depth scanners is not accurate enough to
recover fine details of a scanned object. The paper presents a method to fuse intensity data
and depth information obtained from RGBD scanner under natural illumination, in order
to enhance depth and recover fine details in the reconstructed image. The high precision
depth is obtained from - “shape from shading technique”, without finding and integrating
the surface normals[5].

1 Introduction

The advent of low cost RGBD scanners triggered the development of new algorithms to exploit
the associated intensity image to improve the lack of accuracy of the scanners. The goal is
to fuse intensity data and depth map obtained from RGBD scanner in order to compensate for
measurement errors inherent in the depth scanners and to obtain fine details in the reconstructed
image. The image is reconstructed using a photometric stereo technique which estimates the
surface normals of the object by observing the object under different lighting conditions. It is
based on the fact that the amount of light reflected by a surface is dependent on the orientation
of the surface in relation to the light source and the observer. By measuring the amount of light
reflected into a camera, the space of possible surface orientation is limited. Given enough light
sources from different angles, the surface orientation may be constrained to a single orientation
or even overconstrained. Therefore, a specialized photometric stereo technique called shape from
shading is used to reconstruct image from a data of a single image. But shapes recovered from
shape from shading suffer from ambiguities since there can be several other possible surface to
explain a given image, especially under natural illumination. These ambiguities can be eliminated
by combining data from depth sensor with shape from shading.

Apart from shape from shading, to account for various lighting conditions and various local
lighting effects such as specularities and interreflections, a lighting model is used. This lighting
model is assumed to account for all lambertian and non-lambertian reflections. Lighting model
uses surface normals that are estimated from the input depth map making the algorithm less
sensitive to the calibration of the RGBD scanner. Lighting model estimate is expressed in terms
of surface gradient and its normals. This eliminates the need for finding and integrating surface
normals like in traditional shape from shading technique. But expressing lighting model estimate
in terms of surface gradients, makes the model non-linear. In order to achieve fast convergence,
the variational model of lighting estimate is relinearized.

The main contributions of the paper are:

1. A method to enhance depth accuracy in the reconstructed image by efficiently fusing single
scene RGBD inputs.

2. Proposes a non-traditional way of estimating shape from - “shape from shaping technique”,
without integrating the surface normals.
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3. Proposes a real-time depth enhancement method which operates under natural illumination
and with multiple albedo objects.

2 Shape Refinement Framework

The intensity image and depth map of a naturally illuminated scene is obtained from a stationary
RGBD scanner. The intrinsic matrices and extrinsic parameters of the depth and color sensors
is assumed to be known. However, due to measurement inaccuracies and inherent errors present
in the depth sensor, the input depth profile is fairly noisy. Hence, a bilateral filter is applied
to obtain a smooth estimate of the depth input and surface normals corresponding to smoothed
surface is evaluated in the preprocessing stage. The estimated surface normals eliminate the
need for pre-calibrating the system lighting and can handle dynamic lighting environments.

Next, a lighting estimate is modeled and its corresponding parameters are evaluated using
the intensity image, smoothed depth profile and estimated surface normals. Once the lighting
model is determined, high quality surface is reconstructed by refining the lighting model with
the depth profile and intensity image1.

Figure 1: Pictorial Representation of the proposed framework

3 Lighting Estimate

The image decomposition aims to retrieve intrinsic properties of the image like shading and
reflectance. Since, the image is taken under natural illumination where there is no single point
light source, thus, the Lambertian model cannot be used to recover correct lighting scene. Hence,
the image is decomposed into three components as introduced in Grosse et al [2]: Lambertian
shading, reflectance and specularities. Thus,

L(i, j, ~n) = ρ(i, j)S(~n) + β(i, j) (1)

where L(i, j, ~n) is the image lighting at each pixel, S(~n) is the shading, ρ(i, j) accounts for
multiple albedos and β(i, j) accounts for local lighting variation.

The components of lighting model are recovered using single input image and depth profile
starting with shading. Setting the specularity term to zero, lighting estimate corresponds to
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Lambertian scene. According to Basri and Jacobs[4] and Ramamoorthi and Hanrahan[3] the
irradiance of diffuse object under natural illumination is described by low order spherical har-
monics. Spherical Harmonics is analogous to Fourier analysis, but on the surface of the sphere.
To model the way diffuse surfaces turn light into an image, the amount of light reflected as a
function of the surface normal (assuming unit albedo) is determined, for each lighting condition.
These reflectance functions are produced through the analog of a convolution of the lighting
function using a kernel that represents Lambert’s reflection. This kernel acts as a low-pass filter
with 87.5 percent of its energy in the first four components (the zero and first order harmonics).
Thus, a smooth function of spherical harmonics which are linear polynomial for surface normals
and independent of surface location are used to model shading:

S(~n) = ~mT ñ (2)

where ~m is a vector of four first order spherical harmonics and ñ = (~n, 1)T corresponds to the
surface normals.

The intensity image I is used to determine first four spherical harmonic coefficients. Since
every valid pixel is used to recover shading, an overdetermined least squares problem is used to
recover the coefficients. The least square process is insensitive to high frequency changes which
correspond to abrupt change in geometry.

~m = arg min
~m

‖~mT ñ− I‖22 (3)

Once shading ~S is computed, move on to recover albedos ρ by freezing the shading term. Set
the fidelity term to minimize the `2 error between the proposed algorithm and input image. To
prevent overfitting, a penalty term is added for the minimization problem:

min
ρ
‖ρS(~n)− I‖22 + λρ‖

∑
kεN

ωckω
d
k(ρ− ρk)‖22 (4)

where N is the neighbourhood of the pixel, intensity weighting term (ωck) and depth weighting
term (ωdk) as:

ωck =

{
0, ‖Ik − I‖22 > τ

exp
(
−‖Ik−I(i,j)‖

2
2

2σ2
c

)
, otherwise

(5)

ωdk = exp

(
−‖zk − z(i, j)‖

2
2

2σ2
d

)
(6)

I and z correspond to intensity and depth respectively. σc and σdcorrespond to discontinuties
in intensity and depth respectively.

The penalty term performs three dimensional segmentation of the image into piecewise
smooth parts. Therefore, material and albedo changes are accounted for but subtle changes
in the surface are smoothed. Once albedo is recovered, lighting variation β is also recovered
using similar formulation to albedo. But there is an extra penalty term to limit the energy of β
in order to make it consistent with the shading model.

min
β
‖β − (I − ρS(~n))‖22 + λ1β‖

∑
kεN

ωckω
d
k(β − βk)‖22 + λ2β‖β‖22 (7)
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4 Refining the Surface

Now that the parameters of lighting model1 are evaluated, the fine details of the geometry need
to be restored. The lighting model now is expressed in terms of depth - z, using the relation
between surface normals (~n) and surface gradient (∇z).

~n =

(
dz
dx ,

dz
dy ,−1

)
√

1 + ‖∇z‖2
(8)

Expressing the lighting model in terms of depth forces the surface to change only in the
viewing direction, thus limiting the surface distortion and increasing the robustness. By fixing the
lighting model parameters and allowing the surface gradient to vary, subtle details in the geometry
can be recovered. The objective function f(z) minimizes the difference between input intensity
image and estimated shading model with two regularization terms. The first regularization
term corresponds to the simple fidelity and the second regularization term (4z)corresponds to
smoothness in shading:

f(z) = ‖L(∇z)− I‖22 + λ1z‖z − z0‖22 + λ2z‖4z‖22 (9)

where z0 is the initial depth map.
The nonlinear terms in the least square is frozen and the numerical scheme1 iterates over the

linear terms and, at the end of the iteration the nonlinear terms are updated. The process is
repeated as long as the objective function f(z) decreases.

Algorithm 1 Accelerated Surface Enhancement

Input: z0, ~m, ρ, β - initial surface, lighting parameters
1. while f(zk−1) - f(zk)>0 do

2. | Update ñk=
(
~nk, 1

)T
3. | Update L(∇zk) = ρ(~mT ñk) + β
4. | Update zk to be the minimizer of f(zk)
5. end

5 Results

The proposed algorithm was tested on synthetic data and real data. Synthetic data was obtained
from Stanford 3D repository, Blendswap repository and Smithsonian 3D archive, with the lighting
environment simulated using Blenderr. Each model was used to test different scenario and,
Gaussian noise with zero mean and standard deviation of 1.5 to the depth map were added to
the simulated models. The algorithm parameters were set to λρ = 0.1, λ1β = 1, λ2β = 1, τ = 0.05,

σc =
√

0.05, σd =
√

50, λ1z = 0.004, λ1z = 0.0075. “Thai statue”2 tests for Lambertian object in
three point lighting environment with minimal shadows. “Lincoln”3a was a Lambertian object in
a complex lighting environment with multiple shadows. “C3PO”3b was a non-Lambertian object
with a point light source, while “Cheese Burger”4a was a non-Lambertian multiple albedo object
with three point lighting. The results from the synthetic data were compared with algorithms
proposed by - Han et al.[6] and Wu et al.[1], and the corresponding median of the depth error
and 90th percentile of the depth error compared to ground truth were tabulated4b.

The proposed algorithm was tested on real data captured by Intel’s Real-Sense RGBD sensor
and the algorithm’s behaviour towards the world shapes with multiple albedo objects were ob-
served. From the figure5, it was observed that the algorithm successfully reveals the letter and
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the bird on the shirt alongwith the “SF” logo, “champions” and even the stitches on the baseball
cap. But, the algorithm was slightly confused by the grey “N” which was printed on the cap
(does not have any thickness) while in the reconstructed image, “N” was observed to have some
thickness. This texture copy artifact can be mitigated by reducing the regularization constant
for albedo.

Finally, an unoptimized implementation of the algorithm was tested on Intel i7, 3.4 GHz
processor with 16GB RAM and Nvidia GeForce GTX TITAN GPU. The implementation on this
particular setup was observed to process10 frames per second for 640 x 480 depth profiles. The
time breakdown for the entire process was tabulated.

Hence, it was observed that the proposed algorithm was significantly more robust than the
previously known state-of-art methods and was able to handle real time data at 10 frames per
second.

(a) Thai Statue error analysis. From left to
right: Input color image. Error image of the
raw depth map. Error image of the final result.
Initial surface errors are reduced.

(b) Left to right: HLK reconstruction
with the entire depth map normals (a)Our
method reconstruction with the entire
depth map normals (b)Magnification of
the results is presented in (c)The proposed
method yield accurate reconstruction de-
spite the distorted shading.

Figure 2: Thai Statue

(a) Lincoln (b) C3PO

Figure 3
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(a) Cheese Burger: (a) Color Image.Reconstruction. (e) - (g) Mag-
nifications of HLK, WZNSIT and Ourdistinguish albedo changes.
(b) HLK Reconstruction. (c) WZNSIT Reconstruction. (d) Our
Method respectively. Note how the proposed framework sharply.

Section Time

Bilateral Filter 3.8ms
Image Alignment 31.1ms

Normal Estimation 5.3ms
Lighting Recovery 40.3ms
Surface Refinement 22.6ms

Total Runtime 103.1ms

(b) Algorithm’s Profiling

Figure 4

Figure 5: Results of shape enhancement of real world multipleFiltering and the Proposed Method.
Note how surface wrinkles and smallalbedo objects. Left to right: Color Image, Raw Depth,
Bilateral surface protrusions are now visible.
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