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Abstract

In this report, the paper Shading-based Refinement on Volumetric Signed Distance Func-
tion [5] from Zollhofer et al. in year 2015 will be discussed in detail. This paper proposes
a novel method to efficiently achieve fine-scale 3D reconstruction with commodity sensors.
As the reconstruction from low-budget depth sensors often results in over-smoothness, the
author suggests using the color images to further elevate the quality of the original fusion.
The method jointly optimizes the geometry and albedo on the implicit surface representation,
i.e., signed distance functions. A tailored Gauss-Newton solver is presented to speed up the
optimization on a voxel hashing structure. This approach has good performances but also lack
the ability on large-scale scene or non-Lambertian surface reconstructions.

1 Introduction

Nowadays the commodity RGB-D sensors are ubiquitous, researches like KinectFusion [2] are able
to reconstruct surfaces of objects based on these low-budget cameras with some amount of details.
However, there is an important limitation of these economical depth sensors, i.e., the low-quality
outputs. The proposed method aims to solve this problem by taking the advantage of color images,
namely the high resolution. To do so, the method chooses the implicit surface representation, trun-
cated signed distance functions (TSDFs), to store the 3D geometry information. Unlike meshes,
one of the explicit surface representation methods, TSDF's are easy to progressively integrate with-
out dealing complex topological connections. Therefore, for computational efficiency TSDFs are
preferred. Nevertheless, this structure also leads to over-smoothing because it needs weighted
averaging to integrate new geometric information into the existed reconstruction. Shading-based
refinement is their main contribution to tackle the problem from initial fusion, and it performs
in a hierarchical manner under the voxel hashing scheme. To solve this non-linear optimization
problem efficiently, a GPU-based Gauss-Newton solver is crafted. To summary, this report will be
presented in the following steps:

e an introduction on the related works is presented in section 2
e a overview of the method is presented in section 3
e some discussion of experiments are in sections 4 and 5

e finally followed by a summary (section 6).

2 Related works

The proposed paper is based on some of previous works [3][4], and meanwhile addresses their main
problems. The approach MESHRef [3] operates refinement using color images as well; however,
it chose meshes instead of SDFs, which costs lots of computing time to handle the topology.
The other method [4] estimates the lighting for every single image which yield inconsistency for
different views. Moreover, it refines depth maps independently before fusion, and this pipeline will
conversely smooth out the refined details in previous steps.

After two years when the mainly concerned paper was published, a new approach [1] points out
some issues that may downgrade its performance. The new method proposes to jointly optimize
geometry, albedo, camera poses, camera intrinsics and scene lighting, instead of fixed intrinsics
and camera positions after calibration and bundle adjustments used in the main paper. The new
approach also suggests implementing a much more flexible spatially-varying Spherical Harmonics
to map the lighting model more precisely.
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3 Method description

3.1 Pipeline

As shown in the figure 1, the proposed method takes RGB-D images as input, first computes the
camera pose for each frame, then fuses the depth frames into TSDFs. Given the fusion, a shading-
based refinement is performed in a hierarchical manner, namely coarse-to-fine. The output will be
a fine-scale reconstruction. The following part of this section will show details of the method.
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Figure 1: Overview of the pipeline

1. The very first step of the pipeline is camera poses estimation using bundle adjustment. To
achieve fast convergence, the method splits the process into two steps, namely a sparse bundle
adjustment step and a dense bundle adjustment step. The sparse bundle adjustment requires
detected features as inputs, and the equation 1 has an interpretation that the features seen
from different viewpoints should have similar world coordinates. T" and p represent camera
pose and feature point.

# frames #corresp.

Esparse(T) - Z Z ||lepzk *,-ijijg (1)
i k

However, the precision of poses got from this sparse term is relative low, as the feature
extracted from SIFT corner detector may have some pixels off, therefore a dense bundle
adjustment is needed as shown in egs. (2) to (4).

Edense (T) = wcolorEcolor(T) + wgeometryEgeometry (T) (2)

# frames #pizels

Beotor(T) = > > |i(me(pir)) — Li(me(pir) 13 (3)
i,j k

Color term represents the photometric consistency, namely the color value of the same 3D
point projection in every image pair should be similar,

# frames #pizels
Egeometry(T) = > > [0l (i = T Ty (Ds(ma( T Tipa)))P - (4)
i.j k

and the geometry term represents a point-to-plane energy, namely the corresponding 3D
coordinate of a pixel should fit into the local geometry when projected to another camera
frame.

2. After computed all the camera poses, the approach first fuses all depth maps and initializes
the TSDFs, then followed by the lighting model estimation.

Evigne(1) = ) (B(v) — I(v)) (5)

veDy



Meng Liu Seminar Report on Volumetric Shading-based Refinement

b2
B(v) = a(v) Z Ly Hm (n(v)) (6)
m=1

B(v) represents the shading on the iso-surface, H,, are the 3 band spherical harmonics basis
function, and [,,, are the corresponding coefficients. The energy term eq. (5) minimizes the
difference between computed shading and intensity at voxel v.

3. The final step is non-linear optimization on geometry and albedo of every voxel near the
ios-surface. The objective function eq. (7) contains four terms, a fitting term and three
regularizers eqs. (8) to (11).

Erefine(D,a) = > Wy By(v) + w, By (v) + ws Bs(v) 4+ wa By (v) (7)

v S.t.‘D(’v)|<t5hE”

The fitting term has a similar structure as eq. (5), but here minimizes over the gradient
instead of exact value, as states in the paper, the gradient is more robust than the direct
value of pre-computed lighting model.

Ey(v) = [IVB(v) - VI(v)|}3 (8)

The error term E,.(v) regularizes on the geometry of the objective function, and it is also
called smoothness, which means that the neighbour voxels should contain similar distance
values as the center voxel.

E;(v) = (AD(v))* (9)

The error term FE,(v) stabilizes the refined geometry to avoid influences from noises by
constraining the output reconstruction to be close to the unrefined input.

Ey(v) = (D(v) ~ D(v))’ (10)

The fourth term regularizes on the albedo. To do so, it requires the voxels which have similar
chromaticity I'(v)) should hold similar albedo values a(v).

E,(v)= ) ¢(I'(v) ~I'(u) - (a(v) - a(u))’ (11)

UE N,

4. Then steps 2 and 3 are repeated several times according to the resolution difference between
the depth frame and the color frame. The coarsest level map to the precision of depth frames,
and the final integration maps to the resolution of the color frame.

3.2 Computational efficiency approaches

Another main contribution of this method is the computing efficiency. To achieve fast reconstruc-
tion, a tailored Gauss-Newton solver is used as well as some help from several previous methods.
Voxel hashing is applied here to support the hierarchical refinement; block-based PCG solver is
used to speed up the linearized optimization convergence on the GPU.

4 Experiments and results

The paper tested its volumetric shading-based refinement on several datasets including different
object scales and sensor types. The final result can achieve sub-millimeter detail. For example, the
statues are constructed with noticeable and reasonable curves and edges compared with the original
smoothed depth fusion. As introduced in section 2, it also analyzed some results with previous
works [3] and [4]. Compared to mesh-based refinement MESHRef [3], volumetric refinement has a
clear advantage in computing time. For a synthetically-generated data, MESHRef needs around
20 minutes to perform refinement while volumetric refinement takes less than 7.8 seconds. For a
multi-view stereo dataset, MESHRef requires about 1 hour in contrast to 6.5 seconds from the novel
method, and the later one also produces higher quality results. When comparing to work [4] which
does fusion after refinement, the reconstruction of refinement after fusion contains much more
sharpness on the hair and eye region of the Augustus statue, which they used for the comparison.
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5 Discussion of results

The results and comparisons are persuasive. However, there is an underlying assumption which
states that the “ground truth” obtained from a laser scanner is fully reliable. Only when the
assumption holds, all the numerical and qualitative comparisons with ground truth are plausi-
ble. Otherwise, the experiments show nothing other than which method can produce more visual
appealing results. A better solution is that the author could give more information about the
precision of laser scanner. If the error of reconstruction stays near the range of the precision, the
comparisons of two similar results may not be able to generate any reasonable conclusion. It may
exist ways to acquire true ground truth for a real scene, and yet this is still inevitable problem in
3D reconstruction.

6 Summary

In general, the volumetric shading-based refinement can achieve sub-millimeter fine-scale recon-
struction with commodity sensors in only a few seconds. Up to the publish date, it was the first
method which could produce such impressive results with regular setups. Nevertheless, it has some
limitations. Most important thing is that the efficient computation may not hold for large-scale
scene as it takes the whole sequence as the input instead of periodically update the reconstruction.
And the method assumes the reconstructed surfaces are Lambertian surface. This assumption
lightens the burden of lighting estimation, but also restricts the ability of reconstructing objects
with non-Lambertian surfaces, such as specular reflection surfaces. In real world, however, non-
Lambertian surface takes a great amount of scenes, typically in man-made world.
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