Shading-based Refinement on Volumetric Signed Distance Functions

Zollhöfer, Michael \& Dai, Angela \& Innmann, Matthias \& Wu, Chenglei \& Stamminger, Marc \& Theobalt, Christian \& Nießner, Matthias. (2015). ACM Transactions on Graphics. 34. 96:1-96:14. 10.1145/2766887.

Meng LIU
Technische Universität München
Faculty Informatics
23 July 2019

Agenda

- Introduction
- Related works
- Pipeline of the method (key contributions)
- Results \& Comparisons
- Conclusion
- Appendix

Introduction

- Commodity RGB-D sensors are ubiquitous
- Low-budget depth sensor's quality is limited
- SDF is efficient and easy to integrate but leads to strong over-smoothing
- RGB images resolution is relatively high

Related works

- Wu et al. (2011). Shading-based dynamic shape refinement from multi-view video under general illumination. IEEE International Conference on Computer Vision. IEEE International Conference on Computer Vision. 1108-1115. 10.1109/ICCV.2011.6126358.
- Wu et al. (2014). Real-time Shading-based Refinement for Consumer Depth Cameras. ACM Transactions on Graphics. 33. 1-10. 10.1145/2661229.2661232.
- Zollhöfer et al. (2015). Shading-based Refinement on Volumetric Signed Distance Functions. ACM Transactions on Graphics. 34. 96:1-96:14. 10.1145/2766887.
- Maier et al. (2017). Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting.

Pipeline

Pipeline

Sparse and Dense Bundling

Sparse \& Dense Bundle Adjustment

- Sparse BA:
\#frames\#corresp.

$$
E_{\text {sparse }}(T)=\sum_{i, j} \sum_{k}\left\|T_{i} p_{i k}-T_{j} p_{j k}\right\|_{2}^{2}
$$

- Dense BA:

$$
E_{\text {dense }}(T)=w_{\text {color }} E_{\text {color }}(T)+w_{\text {geometric }} E_{\text {geometric }}(T)
$$

Pipeline

Shading-based Refinement

Shading-based Refinement

Shading-based Refinement

Lighting Estimation

- Directly on the volume
- 3-Band Spherical Harmonics Illumination

$$
E_{l i g h t}(I)=\sum_{v \in D_{0}}(B(v)-I(v))^{2}
$$

Intensity

Shading-based Refinement

Non-linear Optimisation

Shading gradient
$\left.\|\nabla B(v)-\nabla I(v)\|\right|^{2}$

Smoothness
$\left\|\Delta D_{\text {current }}(v)\right\|^{2}$

$$
E_{\text {refine }}(v)=w_{g} E_{g}(v)+w_{r} E_{r}(v)+w_{s} E_{s}(v)+w_{a} E_{a}(v)
$$

Stabilization

$$
\left\|D_{\text {fusion }}(v)-D_{\text {cul }}\right\|_{r e n t}(v) \|^{2}
$$

Albedo
$C(i, j)\left\|A\left(v_{i}\right)-A\left(v_{j}\right)\right\| \|^{2}$

Overview

Results \& Comparisons

Figure 14: Comparison with a laser scan: laser scan (left), error of our refined reconstruction (right) based on PrimeSense data.

Results \& Comparisons

Figures: Refinement results compared with Wu et al. 11 (left) and Wu et al. 14 (right)

Related works

- Wu et al. (2011). Shading-based dynamic shape refinement from multi-view video under general illumination.
- shading-based refinement method which operates on meshes
- Wu et al. (2014). Real-time Shading-based Refinement for Consumer Depth Cameras.
- single image-based methods lead to inconsistent lighting estimation
- refines independent depth maps i.e., fuse after refine
- Zollhöfer et al. (2015). Shading-based Refinement on Volumetric Signed Distance Functions.
- Maier et al. (2017). Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting.
- joint optimization (geometry, albedo, camera poses, intrinsics, scene lighting)
- a much more flexible spatially-varying Spherical Harmonics

Conclusion

- First method to achieve this fine-scale reconstruction with commodity sensors
- Fast reconstruction
- Lack of large-scale reconstruction ability
- Assumption is strict, i.e., Lambertian surface - add terms to take non-lambertian surface into account

Appendix

- https://www.youtube.com/watch?v=YCaNOtMBKp4
- Video shows results of the method

Appendix

- Parameters:
- $w_{g}=0.2, w_{r}=20 \rightarrow 160, w_{s}=10 \rightarrow 120, w_{a}=0.1$
- Here, $\mathrm{a} \rightarrow \mathrm{b}$ means an increase of the weight from a to b during optimisation.
- For objects with uniform albedo - i.e., the Augustus data set -, the author used $w_{a}=\infty$ to keep the albedo constant.

Appendix

Seq.	Level 3				Level 2				Level 1				Level 0		
	Fuse	Opt	\#Vars	\#Iter	Time										
Sokrates (PS)	0.5 s	85 ms	200 k	1.3 s	0.1 s	520 k	1.6 s	0.5 s	2.0 M	1.9 s	3.9 s	16 M	10	9.9 s	
Relief (PS)	0.9 s	0.6 s	1.2 M	1.3 s	0.7 s	2.5 M	1.0 s	1.4 s	4.0 M	1.2 s	2.6 s	12 M	11	9.7 s	
Augustus (PS)	0.4 s	0.1 s	200 k	1.8 s	0.2 s	1.5 M	2.1 s	1.2 s	8.5 M	2.4 s	4.9 s	26 M	12	13.1 s	
Fountain (PS)	0.1 s	0.1 s	500 k	0.2 s	0.8 s	2.5 M	0.3 s	1.1 s	6.0 M	0.5 s	2.7 s	19 M	10	5.8 s	
Figure (MVS)	0.4 s	0.8 s	600 k	1.4 s	1.0 s	2.7 M	2.1 s	2.1 s	11 M	1.9 s	2.3 s	16 M	10	12 s	

Table 1: Timing measurements for different test scenes, where PS denotes the PrimeSense sensor, and MVS, multi-view stereo.

Appendix

Figure 9: Convergence analysis of our energy minimization using our Gauss-Newton solver for different scenes, where PS denotes the PrimeSense sensor, and MVS, multi-view stereo. We iterate over 3 hierarchy levels and run 9 Gauss-Newton steps at each level. Within a Gauss-Newton iteration, 10 PCG iterations minimize the linear system.

Dense Bundle Adjustment:
$\mathrm{E}_{\text {dense }}(\mathbf{T})=\mathrm{w}_{\text {color }} \mathrm{E}_{\text {color }}(\mathrm{T})+$

$$
\mathrm{E}_{\text {color }}(\mathrm{T})=\sum_{\mathrm{i}, \mathrm{j}}^{\text {\#frames }} \sum_{\mathrm{k}}^{\# \mathrm{pix}} \| \mathrm{I}_{\mathrm{i}}\left(\pi_{\mathrm{c}}\left(\mathrm{p}_{\mathrm{ik}}\right)\right)-\mathrm{I}_{\mathrm{j}}\left(\pi_{\mathrm{c}}\left(\mathrm{~T}_{\mathrm{j}}^{-1} \mathrm{~T}_{\mathrm{i}} \mathrm{p}_{\mathrm{ik}}\right) \|_{2}^{2}\right.
$$

Appendix

- All the photos and equations which don't have source statements are taken from the Zollhoefer et al. (2015).

