

Shading-based Refinement on Volumetric Signed Distance Functions

Zollhöfer, Michael & Dai, Angela & Innmann, Matthias & Wu, Chenglei & Stamminger, Marc & Theobalt, Christian & Nießner, Matthias. (2015). ACM Transactions on Graphics. 34. 96:1-96:14. 10.1145/2766887.

Meng LIU Technische Universität München Faculty Informatics 23 July 2019

Agenda

- Introduction
- Related works
- Pipeline of the method (key contributions)
- Results & Comparisons
- Conclusion
- Appendix

Augustus fusion (left) and refined (right) Source: taken from talk slides on zollhoefer.com/publications.html

Introduction

- Commodity RGB-D sensors are ubiquitous
- Low-budget depth sensor's quality is limited
- SDF is efficient and easy to integrate but leads to strong over-smoothing
- RGB images resolution is relatively high

Microsoft Kinect for Xbox 360 Source: from internet

Related works

- Wu et al. (2011). Shading-based dynamic shape refinement from multi-view video under general illumination. IEEE International Conference on Computer Vision. IEEE International Conference on Computer Vision. 1108-1115. 10.1109/ICCV.2011.6126358.
- Wu et al. (2014). Real-time Shading-based Refinement for Consumer Depth Cameras. ACM Transactions on Graphics. 33. 1-10. 10.1145/2661229.2661232.
- Zollhöfer et al. (2015). Shading-based Refinement on Volumetric Signed Distance Functions. ACM Transactions on Graphics. 34. 96:1-96:14. 10.1145/2766887.
- Maier et al. (2017). Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting.

Pipeline

Pipeline

Sparse and Dense Bundling

Sparse & Dense Bundle Adjustment

• Sparse BA:

$$E_{sparse}(T) = \sum_{i,j}^{\text{#frames #corresp.}} \sum_{k} ||T_i p_{ik} - T_j p_{jk}||_2^2$$

• Dense BA:

$$E_{dense}(T) = w_{color}E_{color}(T) + w_{geometric}E_{geometric}(T)$$

Pipeline

Shading-based Refinement

Shading-based Refinement

Shading-based Refinement

Lighting Estimation

- Directly on the volume
- 3-Band Spherical Harmonics Illumination

Signed distance value

$$E_{light}(I) = \sum_{v \in D_0} (B(v) - I(v))^2$$

Shading-based Refinement

Non-linear Optimisation

Overview

Results & Comparisons

Figure 14: Comparison with a laser scan: laser scan (left), error of our refined reconstruction (right) based on PrimeSense data.

Figure 12: Refinement results for different scenes captured with a PrimeSense Carmine 1.09 (Short Range) sensor.

Results & Comparisons

Figures: Refinement results compared with Wu et al. 11 (left) and Wu et al. 14 (right)

Related works

- Wu et al. (2011). Shading-based dynamic shape refinement from multi-view video under general illumination.
 - shading-based refinement method which operates on meshes
- Wu et al. (2014). Real-time Shading-based Refinement for Consumer Depth Cameras.
 - single image-based methods lead to inconsistent lighting estimation
 - refines independent depth maps i.e., fuse after refine
- Zollhöfer et al. (2015). Shading-based Refinement on Volumetric Signed Distance Functions.
- Maier et al. (2017). Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting.
 - joint optimization (geometry, albedo, camera poses, intrinsics, scene lighting)
 - a much more flexible spatially-varying Spherical Harmonics

Conclusion

- First method to achieve this fine-scale reconstruction with commodity sensors
- Fast reconstruction
- Lack of large-scale reconstruction ability
- Assumption is strict, i.e., Lambertian surface add terms to take non-lambertian surface into account

٠

- //www.youtube.com/watch?v=YCaN0tMBK
- Video shows results of the method

• Parameters:

- $w_g = 0.2, w_r = 20 \rightarrow 160, w_s = 10 \rightarrow 120, w_a = 0.1$
- Here, $a \rightarrow b$ means an increase of the weight from a to b during optimisation.
- For objects with uniform albedo i.e., the Augustus data set –, the author used $w_a = \infty$ to keep the albedo constant.

Seq.	Level 3			Level 2			Level 1			Level 0			Total	
	Fuse	Opt	#Vars	#Iter	Time									
Sokrates (PS)	0.5s	85ms	200k	1.3s	0.1s	520k	1.6s	0.5s	2.0M	1.9s	3.9s	16M	10	9.9s
Relief (PS)	0.9s	0.6s	1.2M	1.3s	0.7s	2.5M	1.0s	1.4s	4.0M	1.2s	2.6s	12M	11	9.7s
Augustus (PS)	0.4s	0.1s	200k	1.8s	0.2s	1.5M	2.1s	1.2s	8.5M	2.4s	4.9s	26M	12	13.1s
Fountain (PS)	0.1s	0.1s	500k	0.2s	0.8s	2.5M	0.3s	1.1s	6.0M	0.5s	2.7s	19M	10	5.8s
Figure (MVS)	0.4s	0.8s	600k	1.4s	1.0s	2.7M	2.1s	2.1s	11M	1.9s	2.3s	16M	10	12s

Table 1: Timing measurements for different test scenes, where PS denotes the PrimeSense sensor, and MVS, multi-view stereo.

Figure 9: Convergence analysis of our energy minimization using our Gauss-Newton solver for different scenes, where PS denotes the PrimeSense sensor, and MVS, multi-view stereo. We iterate over 3 hierarchy levels and run 9 Gauss-Newton steps at each level. Within a Gauss-Newton iteration, 10 PCG iterations minimize the linear system.

Dense Bundle Adjustment:

$$\mathbf{E}_{\text{dense}}(\mathbf{T}) = \mathbf{w}_{\text{color}} \mathbf{E}_{\text{color}}(\mathbf{T}) + \mathbf{w}_{\text{geo}} \mathbf{E}_{\text{geo}}(\mathbf{T})$$

$$\mathbf{E}_{color}(\mathbf{T}) = \sum_{i,j}^{\#frames} \sum_{k}^{\#pix} \left\| \mathbf{I}_{i}(\pi_{c}(\mathbf{p}_{ik})) - \mathbf{I}_{j}(\pi_{c}(\mathbf{T}_{j}^{-1}\mathbf{T}_{i}\mathbf{p}_{ik})) \right\|_{2}^{2}$$

$$\mathbf{E}_{\text{geo}}(\mathbf{T}) = \sum_{i,j}^{\text{#frames #pix}} \sum_{k} \left[\mathbf{n}_{ik}^{\mathrm{T}} \cdot (\mathbf{p}_{ik} - \mathbf{T}_{i}^{-1}\mathbf{T}_{j}\boldsymbol{\pi}_{d}^{-1} \left(\mathbf{D}_{j} \left(\boldsymbol{\pi}_{d} \left(\mathbf{T}_{j}^{-1}\mathbf{T}_{i}\mathbf{p}_{ik} \right) \right) \right) \right) \right]^{2}$$

• All the photos and equations which don't have source statements are taken from the Zollhoefer et al. (2015).