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Real-time, high-quality, 3D scanning of large-scale scenes is key to mixed
reality and robotic applications. However, scalability brings challenges of
dri� in pose estimation, introducing signi�cant errors in the accumulated
model. Approaches o�en require hours of o�ine processing to globally
correct model errors. Recent online methods demonstrate compelling re-
sults, but su�er from: (1) needing minutes to perform online correction,
preventing true real-time use; (2) bri�le frame-to-frame (or frame-to-model)
pose estimation resulting in many tracking failures; or (3) supporting only
unstructured point-based representations, which limit scan quality and ap-
plicability. We systematically address these issues with a novel, real-time,
end-to-end reconstruction framework. At its core is a robust pose estimation
strategy, optimizing per frame for a global set of camera poses by consid-
ering the complete history of RGB-D input with an e�cient hierarchical
approach. We remove the heavy reliance on temporal tracking, and con-
tinually localize to the globally optimized frames instead. We contribute
a parallelizable optimization framework, which employs correspondences
based on sparse features and dense geometric and photometric matching.
Our approach estimates globally optimized (i.e., bundle adjusted) poses
in real-time, supports robust tracking with recovery from gross tracking
failures (i.e., relocalization), and re-estimates the 3D model in real-time to
ensure global consistency; all within a single framework. Our approach
outperforms state-of-the-art online systems with quality on par to o�ine
methods, but with unprecedented speed and scan completeness. Our frame-
work leads to a comprehensive online scanning solution for large indoor
environments, enabling ease of use and high-quality results1.
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1 INTRODUCTION
We are seeing a renaissance in 3D scanning, fueled both by applica-
tions such as fabrication, augmented and virtual reality, gaming and
robotics, and by the ubiquity of RGB-D cameras, now even available
in consumer-grade mobile devices. �is has opened up the need for
real-time scanning at scale. Here, the user or robot must scan an
entire room (or several spaces) in real-time, with instantaneous and
continual integration of the accumulated 3D model into the desired
application, whether that is robot navigation, mapping the physical
1Our source code and all reconstruction results are publicly available:
h�p://graphics.stanford.edu/projects/bundlefusion/

world into the virtual, or providing immediate user feedback during
scanning.

However, despite the plethora of reconstruction systems, we have
yet to see a single holistic solution for the problem of real-time 3D
reconstruction at scale that makes scanning easily accessible to
untrained users. �is is due to the many requirements that such a
solution needs to ful�ll:

High-quality surfacemodeling. We need a single textured and
noise-free 3D model of the scene, consumable by standard graphics
applications. �is requires a high-quality representation that can
model continuous surfaces rather than discrete points.

Scalability. For mixed reality and robot navigation scenarios,
we need to acquire models of entire rooms or several large spaces.
Our underlying representation therefore must handle both small-
and large-scale scanning while preserving both global structure and
maintaining high local accuracy.

Global model consistency. With scale comes the need to cor-
rect pose dri� and estimation errors, and the subsequent distortions
in the acquired 3D model. �is correction is particularly challeng-
ing at real-time rates, but is key for allowing online revisiting of
previously scanned areas or loop closure during actual use.

Robust camera tracking. Apart from incremental errors, cam-
era tracking can also fail in featureless regions. In order to recover,
we require the ability to relocalize. Many existing approaches rely
heavily on proximity to the previous frame, limiting fast camera
motion and recovery from tracking failure. Instead, we need to
(re)localize in a robust manner without relying on temporal coher-
ence.

On-the-�ymodel updates. In addition to robust tracking, input
data needs to be integrated to a 3D representation and interactively
visualized. �e challenge is to update the model a�er data has been
integrated, in accordance with the newest pose estimates.

Real-time rates. �e ability to react to instantaneous feedback
is crucial to 3D scanning and key to obtaining high-quality results.
�e real-time capability of a 3D scanning method is fundamental to
AR/VR and robotics applications.

Researchers have studied speci�c parts of this problem, but to
date there is no single approach to tackle all of these requirements
in real time. �is is the very aim of this paper, to systematically
address all these requirements in a single, end-to-end real-time
reconstruction framework. At the core of our method is a robust
pose estimation strategy, which globally optimizes for the camera
trajectory per frame, considering the complete history of RGB-D
input in an e�cient local-to-global hierarchical optimization frame-
work. Since we globally correlate each RGB-D frame, loop closure
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Fig. 1. Our novel real-time 3D reconstruction approach solves for global pose alignment and obtains dense volumetric reconstructions at a level of quality and
completeness that was previously only a�ainable with o�line approaches.

is handled implicitly and continuously, removing the need for any
explicit loop closure detection. �is enables our method to be ex-
tremely robust to tracking failures, with tracking far less bri�le than
existing frame-to-frame or frame-to-model RGB-D approaches. If
tracking failures occur, our framework instantaneously relocalizes
in a globally consistent manner, even when scanning is interrupted
and restarted from a completely di�erent viewpoint. Areas can also
be revisited multiple times without problem, and reconstruction
quality continuously improves. �is allows for a robust scanning
experience, where even novice users can perform large-scale scans
without failure.

Key to our work is a new fully parallelizable sparse-then-dense
global pose optimization framework: sparse RGB features are used
for coarse global pose estimation, ensuring proposals fall within
the basin of convergence of the following dense step, which con-
siders both photometric and geometric consistency for �ne-scale
alignment. �us, we maintain global structure with implicit loop
closures while achieving high local reconstruction accuracy. To
achieve the corresponding model correction, we extend a scalable
variant of real-time volumetric fusion [37], but importantly support
model updates based on re�ned poses from our global optimization.
�us, we can correct errors in the 3D model in real time and revisit
existing scanned areas. We demonstrate how our approach out-
performs current state-of-the-art online systems at unprecedented
speed and scan completeness, and even surpasses the accuracy and
robustness of o�ine methods in many scenarios. �is leads to a
comprehensive real-time scanning solution for large indoor environ-
ments, that requires li�le expertise to operate, making 3D scanning
easily accessible to the masses.

In summary, the main contributions of our work are as follows:
(1) A novel, real-time global pose alignment framework which

considers the complete history of input frames, removing the brit-
tle and imprecise nature of temporal tracking approaches, while
achieving scalability by a rapid hierarchical decomposition of the
problem by using a local-to-global optimization strategy.

(2) A sparse-to-dense alignment strategy enabling both consistent
global structure with implicit loop closures and highly-accurate
�ne-scale pose alignment to facilitate local surface detail.

(3) A new RGB-D re-integration strategy to enable on-the-�y and
continuous 3D model updates when re�ned global pose estimates
are available.

(4) Large-scale reconstruction of geometry and texture, demon-
strating model re�nement in revisited areas, recovery from tracking
failures, and robustness to dri� and continuous loop closures.

2 RELATED WORK
�ere has been extensive work on 3D reconstruction over the past
decades. Key to high-quality 3D reconstruction is the choice of
underlying representation for fusing multiple sensor measurements.
Approaches range from unstructured point-based representations
[18, 22, 41, 50, 54], 2.5D depth map [30, 32] or height-�eld [14]
methods, to volumetric approaches, based on occupancy grids [7, 56]
or implicit surfaces [5, 19]. While each has trade-o�s, volumetric
methods based on implicit truncated signed distance �elds (TSDFs)
have become the de facto method for highest quality reconstructions;
e.g., [11, 13, 26]. �ey model continuous surfaces, systematically
regularize noise, remove the need for explicit topology bookkeeping,
and e�ciently perform incremental updates. �e most prominent
recent example is KinectFusion [20, 34] where real-time volumetric
fusion of smaller scenes was demonstrated.

One inherent issue with these implicit volumetric methods is
their lack of scalability due to reliance on a uniform grid. �is
has become a focus of much recent research [3, 22, 37, 39, 40, 45,
51, 58, 59], where real-time e�cient data structures for volumetric
fusion have been proposed. �ese exploit the sparsity in the TSDF
representation to create more e�cient spatial subdivision strategies.
While this allows for volumetric fusion at scale, pose estimates su�er
from dri�, causing distortions in the 3D model. Even small pose
errors, seemingly negligible on a small local scale, can accumulate
to dramatic error in the �nal 3D model [37]. Zhang et al. [59] use
planar structural priors and repeated object detection to reduce the
e�ect of dri�; however, they do not detect loop closures or use color
data, which makes tracking di�cult in open or planar areas, or very
clu�ered scenes.

Most of the research on achieving globally consistent 3D models at
scale from RGB-D input requires o�ine processing and access to all
input frames. [4, 27, 60–62] provide for globally consistent models
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Fig. 2. Our global pose optimization takes as input the RGB-D stream of a commodity sensor, detects pairwise correspondences between the input frames,
and performs a combination of local and global alignment steps using sparse and dense correspondences to compute per-frame pose estimates.

by optimizing across the entire pose trajectory, but require minutes
or even hours of processing time, meaning real-time revisiting or
re�nement of reconstructed areas is infeasible.

Real-time, dri�-free pose estimation is a key focus in the simulta-
neous localization and mapping (SLAM) literature. Many real-time
monocular RGB methods have been proposed, including sparse
methods [24], semi-dense [10, 12] or direct methods [9, 31]. Typi-
cally these approaches rely on either pose-graph optimization [25]
or bundle adjustment [48], minimizing reprojection error across
frames and/or distributing the error across the graph. While im-
pressive tracking results have been shown using only monocular
RGB sensors, these approaches do not generate detailed dense 3D
models, which is the aim of our work.

MonoFusion [38] augments sparse SLAM bundle adjustment with
dense volumetric fusion, showing compelling monocular results
but on small-scale scenes. Real-time SLAM approaches typically
�rst estimate poses frame-to-frame and perform correction in a
background thread (running slower than real-time rates; e.g., 1Hz).
In contrast, DTAM [35] uses the concept of frame-to-model tracking
(from KinectFusion [20, 34]) to estimate the pose directly from the
reconstructed dense 3D model. �is omits the need for a correction
step, but clearly does not scale to larger scenes.

Pose estimation from range data typically is based on variants of
the iterative closest point (ICP) algorithm [2, 42]. In practice, this
makes tracking extremely bri�le and has led researchers to explore
either the use of RGB data to improve frame-to-frame tracking [52]
or the use of global pose estimation correction, including pose graph
optimization [44], loop closure detection [53], incremental bundle
adjustement [11, 54], or recovery from tracking failures by image
or keypoint-based relocalization [15, 49].

�ese systems are state-of-the-art in terms of online correction
of both pose and underlying 3D model. However, they either re-
quire many seconds or even minutes to perform online optimization
[11, 53]; assume very speci�c camera trajectories to detect explicit
loop closures limiting free-form camera motions and scanning [53];
rely on computing optimized camera poses prior to fusion limiting
the ability to re�ne the model a�erwards [44], or use point-based
representations that limit quality and lack general applicability
where continuous surfaces are needed [54].

3 METHOD OVERVIEW
�e core of our approach is an e�cient global pose optimization
algorithm which operates in unison with a large-scale, real-time 3D
reconstruction framework; see Fig. 2. At every frame, we continu-
ously run pose optimization and update the reconstruction accord-
ing to the newly-computed pose estimates. We do not strictly rely
on temporal coherence, allowing for free-form camera paths, instan-
taneous relocalization, and frequent revisiting of the same scene
region. �is makes our approach robust towards sensor occlusion,
fast frame-to-frame motions and featureless regions.

We take as input the RGB-D stream captured by a commodity
depth sensor. To obtain global alignment, we perform a sparse-
then-dense global pose optimization: we use a set of sparse feature
correspondences to obtain a coarse global alignment, as sparse fea-
tures inherently provide for loop closure detection and relocalization.
�is alignment is then re�ned by optimizing for dense photometric
and geometric consistency. Sparse correspondences are established
through pairwise Scale-Invariant Feature Transform (SIFT) [28] fea-
ture correspondences between all input frames (see Sec. 4.1). �at
is, detected SIFT keypoints are matched against all previous frames,
and carefully �ltered to remove mismatches, thus avoiding false
loop closures (see Sec. 4.1.1).

To make real-time global pose alignment tractable, we perform a
hierarchical local-to-global pose optimization (see Sec. 4.2) using
the �ltered frame correspondences. On the �rst hierarchy level,
every consecutive n frames compose a chunk, which is locally pose
optimized under the consideration of its contained frames. On
the second hierarchy level, all chunks are correlated with respect
to each other and globally optimized. �is is akin to hierarchical
submapping [29]; however, instead of analyzing global connectivity
once all frames are available, our new method forms chunks based
on the current temporal window. Note that this is our only temporal
assumption; between chunks there is no temporal reliance.

�is hierarchical two-stage optimization strategy reduces the
number of unknowns per optimization step and ensures our method
scales to large scenes. Pose alignment on both levels is formulated
as energy minimization problem in which both the �ltered sparse
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correspondences, as well as dense photometric and geometric con-
straints are considered (see Sec. 4.3). To solve this highly-nonlinear
optimization problem on both hierarchy levels, we employ a fast
data-parallel GPU-solver tailored to the problem (see Sec. 4.4).

A dense scene reconstruction is obtained using a sparse volumet-
ric representation and fusion [37], which scales to large scenes in
real-time. �e continuous change in the optimized global poses ne-
cessitates continuous updates to the global 3D scene representation
(see Sec. 5). A key novelty is to allow for symmetric on-the-�y rein-
tegration of RGB-D frames. In order to update the pose of a frame
with an improved estimate, we remove the RGB-D image at the old
pose with a new real-time de-integration step, and reintegrate it at
the new pose. �us, the volumetric model continuously improves as
more RGB-D frames and re�ned pose estimates become available;
e.g., if a loop is closed (cf. Fig. 13).

4 GLOBAL POSE ALIGNMENT
We �rst describe the details of our real-time global pose optimization
strategy, which is the foundation for online, globally-consistent 3D
reconstruction. Input to our approach is the live RGB-D stream
S = { fi = (Ci ,Di )}i captured by a commodity sensor. We assume
spatially and temporally aligned color Ci and depth data Di at
each frame, captured at 30Hz and 640 × 480 pixel resolution. �e
goal is to �nd a set of 3D correspondences between the frames in
the input sequence, and then �nd an optimal set of rigid camera
transforms {Ti } such that all frames align as best as possible. �e
transformation Ti (p) = Rip + ti (rotation Ri , translation ti ) maps
from the local camera coordinates of the i-th frame to the world
space coordinate system; we assume the �rst frame de�nes the
world coordinate system.

4.1 Feature Correspondence Search
In our framework, we �rst search for sparse correspondences be-
tween frames using e�cient feature detection, feature matching,
and correspondence �ltering steps. �ese sparse correspondences
are later used in tandem with dense photometric correspondences,
but since accurate sparse correspondences are crucial to a�aining
the basin of convergence of the dense optimization, we elaborate
on their search and �ltering below. For each new frame, SIFT fea-
tures are detected and matched to the features of all previously seen
frames. We use SIFT as it accounts for the major variation encoun-
tered during hand-held RGB-D scanning, namely: image translation,
scaling, and rotation. Potential matches between each pair of frames
are then �ltered to remove false positives and produce a list of valid
pairwise correspondences as input to global pose optimization. Our
correspondence search is performed entirely on the GPU, avoiding
the overhead of copying data (e.g., feature locations, descriptors,
matches) to the host. We compute SIFT keypoints and descriptors
at 4 − 5 ms per frame, and match a pair of frames in ≈ 0.05ms (in
parallel). We can thus �nd full correspondences in real-time against
up to over 20K frames, matched in a hierarchical fashion, for every
new input RGB-D image.

4.1.1 Correspondence Filtering. To minimize outliers, we �lter
the sets of detected pairwise correspondences based on geometric
and photometric consistency. Note that further robustness checks

are built into the optimization (not described in this section; see
Sec. 4.4.1 for details).
Key Point Correspondence Filter For a pair of frames fi and
fj with detected corresponding 3D points P from fi , and Q from
fj , the key point correspondence �lter �nds a set of correspon-
dences which exhibit a stable distribution and a consistent rigid
transform. Correspondences are greedily aggregated (in order of
match distance); for each newly added correspondence, we compute
the rigid transform Ti j (p) = (T−1

j ◦ Ti )(p), which minimizes the
RMSD between the current set of correspondences Pcur and Qcur ,
using the Kabsch algorithm [16, 21]. We further check whether
this is an ambiguously determined transform (e.g, the correspon-
dences lie on a line or exhibit rotational symmetry) by performing a
condition analysis of the covariance of points of Pcur and Qcur as
well as the cross-covariance between Pcur and Qcur ; if any of these
condition numbers are high (> 100) then the system is considered
unstable. �us, if the re-projection error under Ti j is high (max resid-
ual > 0.02m) or the condition analysis determines instability, then
correspondences are removed (in order of re-projection error) until
this is not the case anymore or there are too few correspondences to
determine a rigid transform. If the resulting set of correspondences
for fi and fj do not produce a valid transform, all correspondences
between fi and fj are discarded.
SurfaceArea Filter In addition, we check that the surface spanned
by the features is large enough, as correspondences spanning small
physical size are prone to ambiguity. For frames fi and fj , we esti-
mate the surface areas spanned by the 3D keypoints P of fi and by
the 3D keypointsQ of fj . For each set of 3D points, we project them
into the plane given by their two principal axes, with surface area
given by the 2D oriented bounding box of the resulting projected
points. If the areas spanned by P and Q are insu�cient (< 0.032m2),
the set of matches is deemed ambiguous and discarded.
Dense Veri�cation Finally, we perform a dense two-sided geo-
metric and photometric veri�cation step. For frames fi and fj , we
use the computed relative transform Ti j from the key point corre-
spondence �lter to align the coordinate systems of fi and fj . We
measure the average depth discrepancy, normal deviation and pho-
toconsistency of the re-projection in both directions in order to
�nd valid pixel correspondences, and compute the re-projection
error of these correspondences. For e�ciency reasons, this step
is performed on �ltered and downsampled input frames of size
w ′×h′ = 80×60. Note that when a new RGB-D image fi arrives, its
�ltered and downsampled color intensity Clowi and depthDlow

i are
cached for e�ciency. �e camera space positions P lowi and normals
N low
i of each Dlow

i are also computed and cached per frame. With
π denoting the camera intrinsics for the downsampled images, the
total re-projection error from fi to fj is:

Er (fi , fj ) =
∑
x,y




Ti j (pi,x,y ) − qj,x,y


2
.

Here, pi,x,y = P lowi (x ,y) and qj,x,y = P lowj (π−1(Ti jpi,x,y )). How-
ever, this is sensitive to occlusion error, so we discard correspon-
dences with high depth discrepancy, normal deviation, or lack of
photoconsistency. �at is, the potential correspondence at pixel
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location (x ,y) is considered valid if the following conditions hold:


Ti j (pi,x,y ) − qj,x,y


2
< τd

(Ti j (ni,x,y )) · nj,x,y > τn


Clowi (x ,y) − Clowj (x ,y)





1
< τc

Matches between fi and fj are invalidated in the case of excessive
re-projection error (> 0.075m) or insu�cient valid correspondences
(< 0.02w ′h′), and we use τd = 0.15m, τn = 0.9, τc = 0.1. �is
check is e�ciently implemented with a single kernel call, such that
each thread block handles one pair of images, with re-projection
computed through local reductions.

If all checks are passed, the correspondences are added to the
valid set, which is used later on for pose optimization. We only
consider a frame-to-frame match if the valid set comprises at least
Nmin correspondences. Note that Nmin = 3 is su�cient to de�ne a
valid frame-to-frame transform; however, we found Nmin = 5 to be
a good compromise between precision and recall.

4.2 Hierarchical Optimization
In order to run at real-time rates on up to tens of thousands of RGB-
D input frames, we apply a hierarchical optimization strategy. �e
input sequence is split into short chunks of consecutive frames. On
the lowest hierarchy level, we optimize for local alignments within
a chunk. On the second hierarchy level, chunks are globally aligned
against each other, using representative keyframes with associated
features per chunk.
Local Intra-Chunk Pose Optimization Intra-chunk alignment
is based on chunks of Nchunk = 11 consecutive frames in the input
RGB-D stream; adjacent chunks overlap by 1 frame. �e goal of local
pose optimization is to compute the best intra-chunk alignments
{Ti }, relative to the �rst frame of the chunk, which locally de�nes
the reference frame. To this end, valid feature correspondences are
searched between all pairs of frames of the chunk, and then the en-
ergy minimization approach described in Sec. 4.3 is applied, jointly
considering both these feature correspondences and dense photo-
metric and geometric matching. Since each chunk only contains a
small number of consecutive frames, the pose variation within the
chunk is small, and we can initialize each of the Ti to the identity
matrix. To ensure that the local pose optimization result a�er con-
vergence is su�ciently accurate, we apply the Dense Veri�cation
test (see Sec. 4.1.1) to each pair of images within the chunk using
the optimized local trajectory. If the re-projection error is too large
for any pair of images (> 0.05m), the chunk is discarded and not
used in the global optimization.
Per-Chunk Keyframes Once a chunk has been completely pro-
cessed, we de�ne the RGB-D data from the �rst frame in the chunk
to be the chunk’s keyframe. We also compute a representative ag-
gregate keyframe feature set. Based on the optimized pose trajectory
of the chunk, we compute a coherent set of 3D positions of the
intra-chunk feature points in world space. �ese 3D positions may
contain multiple instances of the same real-world point, found in
separate pairwise frame matches. �us, to obtain the keyframe
feature set, we aggregate the feature point instances that have pre-
viously found (intra-chunk) matches. �ose that coincide in 3D

world space (< 0.03m) are merged to one best 3D representative
in the least squares sense. �is keyframe feature set is projected
into the space of the keyframe using the transformations from the
frames of origin, resulting in a consistent set of feature locations and
depths. Note that once this global keyframe and keyframe feature
set is created, the chunk data (i.e., intra-chunk features, descriptors,
correspondences) can be discarded as it is not needed in the second
layer pose alignment.
Global Inter-ChunkPoseOptimization Sparse correspondence
search and �ltering between global keyframes is analogous to that
within a chunk, but on the level of all keyframes and their feature
sets. If a global keyframe does not �nd any matches to previously
seen keyframes, it is marked as invalid but kept as a candidate, allow-
ing for re-validation when it �nds a match to a keyframe observed
in the future. �e global pose optimization computes the best global
alignments {Ti } for the set of all global keyframes, thus aligning all
chunks globally. Again, the same energy minimization approach
from Sec. 4.3 is applied using both sparse and dense constraints.
Intra-chunk alignment runs a�er each new global keyframe has
found correspondences. �e pose for a global keyframe is initialized
with the delta transform computed by the corresponding intra-
chunk optimization, composed with the previous global keyframe
pose. A�er the intra-chunk transforms have been computed, we
obtain globally consistent transforms among all input frames by
applying the corresponding delta transformations (from the local
optimization) to all frames in a chunk.

4.3 Pose Alignment as Energy Optimization
Given a set of 3D correspondences between a set of frames S (frames
in a chunk or keyframes, depending on hierarchy level), the goal of
pose alignment is to �nd an optimal set of rigid camera transforms
{Ti } per frame i (for simpler notation, we henceforth write i for fi )
such that all frames align as best as possible. We parameterize the
4 × 4 rigid transform Ti using matrix exponentials based on skew-
symmetric matrix generators [33], which yields fast convergence.
�is leaves 3 unknown parameters for rotation, and 3 for translation.
For ease of notation, we stack the degrees of freedom for all |S|
frames in a parameter vector:

X = (R0, t0, . . . ,R |S | , t |S |)T = (x0, . . . ,xN )T .

Here, N is the total number of variables xi . Given this notation,
we phrase the alignment problem as a variational non-linear least
squares minimization problem in the unknown parameters X. To
this end, we de�ne the following alignment objective, which is based
on sparse features and dense photometric and geometric constraints:

Ealign(X) = wsparseEsparse(X) +wdenseEdense(X).

Here,wsparse andwdense are weights for the sparse and dense match-
ing terms, respectively. wdense is linearly increased; this allows the
sparse term to �rst �nd a good global structure, which is then re�ned
with the dense term (as the poses fall into the basin of convergence of
the dense term, it becomes more reliable), thus achieving coarse-to-
�ne alignment. Note that depending on the optimization hierarchy
level, the reference frame is the �rst frame in the chunk (for intra-
chunk alignment), or the �rst frame in the entire input sequence
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(for global inter-chunk alignment). Hence, the reference transform
T0 is not a free variable and le� out from the optimization.
Sparse Matching In the sparse matching term, we minimize the
sum of distances between the world space positions over all feature
correspondences between all pairs of frames in S:

Esparse(X) =
|S |∑
i=1

|S |∑
j=1

∑
(k,l )∈C(i, j)



Tipi,k − Tjpj,l 

2
2 .

Here, pi,k is the k-th detected feature point in the i-th frame. Ci, j
is the set of all pairwise correspondences between the i-th and
the j-th frame. Geometrically speaking, we seek the best rigid
transformations Ti such that the Euclidean distance over all the
detected feature matches is minimized.
DenseMatching We additionally use dense photometric and geo-
metric constraints for �ne-scale alignment. To this end, we exploit
the dense pixel information of each input frame’s color Ci and depth
Di . Evaluating the dense alignment is computationally more ex-
pensive than the previous sparse term. We therefore evaluate it on
a restricted set E of frame pairs, E contains a frame pair (i, j) if their
camera angles are similar (within 60◦, to avoid glancing angles of
the same view) and they have non-zero overlap with each other; this
can be thought of as encoding the edges (i, j) of a sparse matching
graph. �e optimization for both dense photometric and geometric
alignment is based on the following energy:

Edense(T ) = wphotoEphoto(T ) +wgeoEgeo(T ).
Here, wphoto is the weight of the photometric term and wgeo of the
geometric term, respectively. For the dense photo-consistency term,
we evaluate the error on the gradient Ii of the luminance of Ci to
gain robustness against lighting changes:

Ephoto(X) =
∑
(i, j)∈E

|Ii |∑
k=0




Ii (π (di,k )) − Ij (π (T−1
j Tidi,k ))




2

2
.

Here, π denotes the perspective projection, and di,k is the 3D po-
sition associated with the k-th pixel of the i-th depth frame. Our
geometric alignment term evaluates a point-to-plane metric to al-
low for �ne-scale alignment in the tangent plane of the captured
geometry:

Egeo(X) =∑
(i, j)∈E

|Di |∑
k=0

[
nTi,k (di,k − T

−1
i Tjπ

−1
(
Dj

(
π (T−1

j Tidi,k )
))
)
]2
.

Here, ni,k is the normal of the k-th pixel in the i-th input frame.
Correspondences that project outside of the input frame are ignored,
and we apply ICP-like pruning based on distance and normal con-
straints a�er each optimization step. For the dense photometric
and geometric constraints, we downsample Ii and Di , to 80 × 60
pixels (using the same cached frames as for the dense veri�cation
�lter). Note that for the global pose optimization, the result of
optimizing densely at every keyframe is e�ectively reset by the
sparse correspondence optimization, since the 3D positions of the
correspondences are �xed. �us we only perform the dense global
keyframe optimization a�er the user has indicated the end of scan-
ning.

4.4 Fast and Robust Optimization Strategy
�e described global pose alignment objective is a non-linear least
squares problem in the unknown extrinsic camera parameters. Since
our goal is online and global camera pose optimization for long scan-
ning sequences with over twenty thousand frames, an e�cient, yet
e�ective, optimization strategy is required. To face this challenge,
we implement a data-parallel GPU-based non-linear iterative solver
similar to the work of Zollhöfer et al. [64]. However, the unique spar-
sity pa�ern associated with the global alignment objective requires
a di�erent parallelization strategy and prohibits the use of previ-
ous GPU-based solvers [55, 63, 64]. Our approach is based on the
Gauss-Newton method, which only requires �rst order derivatives
and exhibits quadratic convergence close to the optimum, which
is bene�cial due to our incremental optimization scheme. We �nd
the best pose parameters X∗ by minimizing the proposed highly
non-linear least squares objective using this method:

X∗ = argmin
X

Ealiдn (X) .

For ease of notation, we reformulate the objective in the following
canonical least-squares form:

Ealiдn (X) =
R∑
i=1

ri (X)2 .

�is is done by re-naming the R = 3Ncorr + |E| · (|Ii | + |Di |) terms
of the energy appropriately. Here, Ncorr is either the total number
of inter-chunk sparse correspondences for inter-chunk alignment,
or per-chunk sparse correspondences for intra-chunk alignment.
�e notation can be further simpli�ed by de�ning a vector �eld
F : RN → RR that stacks all scalar residuals:

F(X) = [ . . . , ri (X), . . . ]T .

With this notation, Er ef ine can be expressed in terms of the squared
Euclidean length of F(X):

Er ef ine (X) = | |F(X)| |22 .

Gauss-Newton is applied via a local linear approximation of F at
the last solution Xk−1 using �rst-order Taylor expansion:

F(Xk ) = F(Xk−1) + JF(Xk−1) · ∆X, ∆X = Xk − Xk−1 .

Here, JF denotes the Jacobian of F. By substituting F with this
local approximation, the optimal parameter update ∆X∗ is found
by solving a linear least squares problem:

∆X∗ = argmin
∆X

| |F(Xk−1) + JF(Xk−1) · ∆X||22︸                                 ︷︷                                 ︸
El in (∆X)

.

To obtain the minimizer ∆X∗, we set the corresponding partial
derivatives dEl in

d∆Xi (∆X
∗
i ) = 0, ∀i to zero, which yields the following

system of linear equations:

JF(Xk−1)T JF(Xk−1) · ∆X∗ = −JF(Xk−1)T F(Xk−1) .

To solve the system, we use a GPU-based data-parallel Precondi-
tioned Conjugate Gradient (PCG) solver with Jacobi preconditioner.
Based on the iterative solution strategy, the sparsity of the system
matrix JF(Xk−1)T JF(Xk−1) can be exploited. For the sparse term,
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we never explicitly compute this matrix, but compute the non-zero
entries, if required, on-the-�y during the PCG iterations.

Gauss-Newton iterates this process of locally linearizing the en-
ergy and solving the associated linear least squares problem starting
from an initial estimate X0 until convergence. We warm-start the
optimization based on the result obtained in the last frame.

In contrast to Zollhöfer [64], instead of using a reduction based
on two kernels to compute the optimal step size and update for the
descent direction, we use a single kernel running a combination of
warp scans based on the shu�e intrinsic and global memory atomics
to accumulate the �nal result. �is turned out to be much faster for
our problem size.

�e central operation of the PCG algorithm is the multiplication
of the system matrix with the current descent direction.

Let us �rst consider the sparse feature term. To avoid �ll-in, we
multiply the system matrix incrementally based on two separate
kernel calls: the �rst kernel multiplies JF and the computed inter-
mediate result is then multiplied by JTF in the second kernel call.
For example, at the end of the apt0 sequence (see Fig. 3, bo�om), JF
has about 105K rows (residuals) and 5K columns (unknowns). In
all operations, we exploit the sparse structure of the matrix, only
performing operations which will lead to a non-zero result. Since
JF and JTF have very di�erent row-wise sparsity pa�erns, using two
di�erent kernel calls helps to �ne tune the parallelization approach
to the speci�c requirements.

More speci�cally, for the sparse term, each row of JF encodes ex-
actly one pairwise correspondence, depending on at most 2 extrinsic
camera poses or 2 × 6 = 12 non-zero matrix entries. Due to the low
number of required operations, the matrix-vector product can be
readily computed by assigning one dedicated thread to each 3D block
row; i.e., handling the x-, y-, and z-residuals of one correspondence.
�is is bene�cial, since the di�erent dimensions share common op-
erations in the evaluation of F and JF. In contrast, JT has exactly
one row per unknown. �e number of non-zero entries in each row
is equivalent to the number of correspondences involving the frame
associated with the unknown. For longer scanning sequences, this
can easily lead to several thousand entries per row. To reduce the
amount of memory reads and compute of each thread, we opted for
a reduction-based approach to compute the matrix-vector products.
We use one block of size Nblock = 256 to compute each row-wise
dot product. Each warp of a block performs a warp-reduction based
on the shu�e intrinsic and the �nal per-warp results are combined
based on shared memory atomics. For computing the multiplication
with JTF , we pre-compute auxiliary lists that allow lookup to all
correspondences that in�uence a certain variable. �is table is �lled
based on a kernel that has one thread per correspondence and adds
entries to the lists corresponding to the involved variables. �e
per-list memory is managed using atomic counters. We recompute
this table if the set of active correspondences changes.

For the dense photometric and geometric alignment terms, the
number of associated residuals is considerably higher. Since the
system matrix is �xed during the PCG steps, we pre-compute it at
the beginning of each non-linear iteration. �e required memory is
preallocated and we update only the non-zero entries via sca�ered
writes. Note that we only require a few writes, since we perform
the local reductions in shared memory.

4.4.1 Correspondence and Frame Filtering. As an additional safe-
guard to make the optimization robust against potential corre-
spondence outliers, which were mistakenly considered to be valid,
we perform correspondence and frame �ltering a�er each opti-
mization �nishes. �at is, we determine the maximum residual
rmax = maxi ri (X) using a parallel reduction on the GPU, with the
�nal max computation performed on the CPU. If rmax > 0.05m,
we remove all correspondences between the two frames i and j
associated with the correspondence which induces rmax. Note that
all correspondences between i and j are removed, in order to min-
imize the number of times the optimization has to run in order
to prune all bad correspondences. Additionally, if a frame has no
correspondence to any other frame, it is implicitly removed from
the optimization and marked as invalid.

Note that the vast majority of false loop closures are �ltered
out through the veri�cation steps (Sec. 4.1.1), and the optimization
pruning e�ectively removes the rest. Table 2 provides a detailed
overview of the e�ects of these �ltering steps.

5 DYNAMIC 3D RECONSTRUCTION
Key to live, globally consistent reconstruction is updating the 3D
model based on newly-optimized camera poses. We thus monitor
the continuous change in the poses of each frame to update the vol-
umetric scene representation through integration and de-integration
of frames. Based on this strategy, errors in the volumetric represen-
tation due to accumulated dri� or dead reckoning in feature-less
regions can be �xed as soon as be�er pose estimates are available.

5.1 Scene Representation
Scene geometry is reconstructed by incrementally fusing all input
RGB-D data into an implicit truncated signed distance (TSDF) repre-
sentation, following Curless and Levoy [5]. �e TSDF is de�ned over
a volumetric grid of voxels; to store and process this data, we em-
ploy the state-of-the-art sparse volumetric voxel hashing approach
proposed by Nießner et al. [37]. �is approach scales well to the
scenario of large-scale surface reconstruction, since empty space
neither needs to be represented nor addressed; the TSDF is stored
in a sparse volumetric grid based on spatial hashing. Following the
original approach, we also use voxel blocks of 8 × 8 × 8 voxels. In
contrast to the work of Nießner et al. [37], we allow for RGB-D
frames to both be integrated into the TSDF as well as de-integrated
(i.e., adding and removing frames from the reconstruction). In order
to allow for pose updates, we also ensure that these two operations
are symmetric; i.e., one inverts the other.

5.2 Integration and De-integration
Integration of a depth frame Di occurs as follows. For each voxel,
D(v) denotes the signed distance of the voxel, W(v) the voxel weight,
di (v) the projective distance (along the z axis) between a voxel and
Di , and wi (v) the integration weight for a sample of Di . For data
integration, each voxel is then updated by

D′(v) = D(v)W(v)+wi (v)di (v)
W(v)+wi (v) , W′(v) =W(v) +wi (v).
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We can reverse this operation to de-integrate a frame. Each voxel
is then updated by

D′(v) = D(v)W(v)−wi (v)di (v)
W(v)−wi (v) , W′(v) =W(v) −wi (v).

We can thus update a frame in the reconstruction by de-integrating
it from its original pose and integrating it with a new pose. �is is
crucial for obtaining high-quality reconstructions in the presence
of loop closures and revisiting, since the already integrated sur-
face measurements must be adapted to the continuously changing
stream of pose estimates.

5.3 Managing Reconstruction Updates
Each input frame is stored with its associated depth and color data,
along with two poses: its integrated pose, and its optimized pose.
�e integrated pose is the one used currently in the reconstruction,
and is set whenever a frame gets integrated. �e optimized pose
stores the (continually-changing) result of the pose optimization.

When an input frame arrives, we aim to integrate it into the
reconstruction as quickly as possible, to give the user or robot in-
stantaneous feedback of the 3D model. Since the global optimization
is not run for each frame but for each chunk, an optimized pose may
not immediately be available and we must obtain an initial transform
by other means. We compute this initial transform by composing
the frame-to-frame transform from the key point correspondence
�lter with the newest available optimized transform.

In order to update the reconstruction with the most pertinent
optimization updates, we sort the frames in descending order by
the di�erence between the integrated transform and the optimized
transform. �e integrated transform and optimized transform are
parameterized by 6 DOFs: α , β,γ (here, we use Euler angles in
radians) describing the rotation, and x ,y, z (in meters) describing
the translation. �en the distance between the integrated trans-
form tint = (αi , βi ,γi ,xi ,yi , zi ) and the optimized transform topt =
(αo , βo ,γo ,xo ,yo , zo ) is de�ned to be ‖s ∗ tint − s ∗ topt ‖2 where
s = (2, 2, 2, 1, 1, 1) is multiplied element-wise to bring the rotations
and translations closer in scale. For each new input frame, we de-
integrate and integrate the Nf ix = 10 frames from the top of the list.
�is allows us to dynamically update the reconstruction to produce
a globally-consistent 3D reconstruction.

6 RESULTS
For live scanning, we use a Structure Sensor2 mounted to an iPad
Air. �e RGB-D stream is captured at 30Hz with a color and depth
resolution of 640 × 480. Note that we are agnostic to the type
of used depth sensor. We stream the captured RGB-D data via a
wireless network connection to a desktop machine that runs our
global pose optimization and reconstructs a 3D model in real-time.
Visual feedback of the reconstruction is streamed live to the iPad to
aid in the scanning process. To reduce the required bandwidth, we
use data compression based on zlib for depth and jpeg compression
for color. We implemented our global pose alignment framework
using the CUDA 7.0 architecture. Reconstruction results of scenes
captured using our live system are shown in Fig. 1 and 3 as well
as in the supplementary video. �e completeness of the various

2h�p://structure.io/

Fig. 4. Performance Evaluation: our proposed pipeline runs at well beyond
30Hz for all used test sequences. The computations are split up over two
GPUs (le� bar Titan X, right bar Titan Black).

Fig. 5. Convergence analysis of the global keyframe optimization (log scale):
peaks correspond to new global keyframes. Only a few iterations are re-
quired for convergence.

Fig. 6. Recovery from tracking failure: our method is able to detect (gray
overlay) and recover from tracking failure; i.e., if the sensor is occluded or
observes a featureless region.

large-scale indoor scenes (4 o�ces, 2 apartments, 1 copyroom, with
up to 95m camera trajectories), their alignment without noticeable
camera dri�, and the high local quality of geometry and texture are
on par with even o�ine approaches. �is also demonstrates that our
global pose alignment strategy scales well to large spatial extents
and long sequences (over 20,000 frames).

�alitative Comparison. First, we compare to the online 3D re-
construction approach of Nießner et al. [37], see Fig. 12. In contrast



BundleFusion: Real-time Globally Consistent 3D Reconstruction using On-the-fly Surface Re-integration • 1:9

Fig. 3. Large-scale reconstruction results: our proposed real-time global pose optimization outperforms current state-of-the-art online reconstruction systems.
The globally aligned 3D reconstructions are at a quality that was previously only a�ainable o�line. Note the completeness of the scans, the global alignment
without noticeable camera dri� and the high local quality of the reconstructions in both geometry and texture. Scans comprise thousands of input frames,
include revisiting and many loop closures.

Fig. 7. Our proposed real-time global pose optimization (top) outperforms the method of Whelan et al. [54] (bo�om) in terms of scan completeness and
alignment accuracy. Note, we generate a high-quality surface mesh, while the competing approach only outputs a pointcloud.

to their work, which builds on frame-to-model tracking and suf-
fers from the accumulation of camera dri�, we are able to produce
dri�-free reconstructions at high �delity. Our novel global pose
optimization framework implicitly handles loop closure, recovers
from tracking failures, and reduces geometric dri�. Note that most
real-time fusion methods (e.g., [3, 20, 34, 37]) share the same frame-
to-model ICP tracking algorithm, and therefore su�er from notable
dri�. Fig. 7 and 9 show a comparison of our approach with the
online ElasticFusion approach of Whelan et al. [54], which captures
surfel maps using dense frame-to-model tracking and explicitly

handles loop closures using non-rigid warping. In contrast, our
dynamic de-integration and integration of frames mitigates issues
with warping artifacts in rigid structures, and moreover produces a
high quality continuous surface. Since our approach does not rely
on explict loop closure detection, it scales be�er to scenarios with
many loop closures (c.p. Fig. 7 and 9). We additionally compare
to the o�ine Redwood approach [4], using their rigid variant, see
Fig. 8 and 9. Note, we do not compare to their newer non-rigid
approach, since it fails on most of our dataset sequences. While
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Fig. 8. Our proposed real-time global pose optimization (top) delivers a reconstruction quality on par or even be�er than the o�-line Redwood [4] system
(bo�om). Note, our reconstructions have more small scale detail.

Fig. 9. Our proposed real-time global pose optimization (top) delivers a reconstruction quality on par or even be�er than the o�-line Redwood [4] (middle) and
the ElasticFusion [54] (bo�om) system. Note that Redwood does not use color information, and was not able to resolve all loop closures in this challenging
scan.

Fig. 10. Comparison of Sparse vs. Dense Alignment: the proposed dense
intra- and inter- chunk alignment (top) leads to higher quality reconstruc-
tions than only the sparse alignment step (bo�om).

their approach takes several hours (2.3h - 13.2h for each of our se-
quences), we achieve comparable quality and be�er reconstruction
of small-scale detail at real-time rates. Note that Redwood does not

take color information into account, thus struggling with sequences
that contain fewer geometric features.

Performance and Convergence. We measure the performance of
our pipeline on an Intel Core i7 3.4GHz CPU (32GB RAM). For com-
pute, we use a combination of a NVIDIA GeForce GTX Titan X and
a GTX Titan Black. �e Titan X is used for volumetric reconstruc-
tion, and the Titan Black for correspondence search and global pose
optimization. Our pipeline runs with a framerate well beyond 30Hz
(see Fig. 4) for all shown test sequences. Note that the global dense
optimization runs in < 500ms at the end of the sequences. A�er
adding a new global keyframe, our approach requires only a few
iterations to reach convergence. Fig. 5 shows convergence plots for
three of the used test sequences (cf. Fig. 3); the behavior generalizes
to all other sequences. We achieve this real-time performance with
the combination of our tailored data-parallel Gauss-Newton solver
(e�ciently handling millions of residuals and solving for over a
hundred thousand unknowns), a sparse-to-dense strategy enabling
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Fig. 11. Performance comparison of our tailored GPU-based solver to
Ceres [1]. Both solvers are evaluated over the sparse energy term for 101
keyframes, involving 600 variables and 16339 residuals, with poses initialized
to the identity.

convergence in only a few iterations, and a local-to-global strategy
which e�ciently decomposes the problem. Note that recent work
provides detailed intuition why hand-cra�ed optimizers outperform
existing, general solver libraries [6].

Additionally, we evaluate the performance of our tailored GPU-
based solver against the widely-used, CPU-based Ceres solver [1].
Fig. 11 shows the performance of both solvers for the sparse energy
over 101 keyframes, comprising 600 variables and 16339 residuals,
with poses initialized to the identity. Note that this behavior is
representative of other sparse energy solves. For Ceres, we use the
default Levenberg-Marquardt with a sparse normal Cholesky linear
solver (the fastest of the linear solver options for this problem).
While our solver takes a couple more iterations to converge without
the Levenberg-Marquardt damping strategy, it still runs ≈ 20 times
faster than Ceres while converging to the same energy minimum.

Table 1. Memory consumption (GB) for the captured sequences.

GPU CPU
1cm 4mm

Opt-d Opt-s Rec
∑

Rec
∑

Apt 0 1.4 0.031 0.5 1.9 3.9 5.3 20.0
Apt 1 1.4 0.031 0.4 1.8 3.2 4.6 20.1
Apt 2 0.6 0.012 0.7 1.4 6.0 6.7 9.3

Copyroom 0.7 0.016 0.3 1.1 1.8 2.6 10.5
O�ce 0 1.0 0.021 0.4 1.4 2.5 3.5 14.4
O�ce 1 0.9 0.024 0.4 1.4 2.9 3.9 13.4
O�ce 2 0.6 0.011 0.4 1.0 3.0 3.6 8.2
O�ce 3 0.6 0.011 0.4 1.0 2.7 3.3 8.9

Memory Consumption. We evaluate the memory consumption of
our globally consistent reconstruction approach on our eight cap-
tured sequences, see Tab. 1. �e most signi�cant required memory
resides in RAM (CPU), i.e., 20GB for Apt 0. It stores all RGB-D frames
and depends linearly on the length of the sequence, see Tab. 5. �e
required device memory (GPU) is much smaller, e.g., 5.3GB (4mm
voxels) and 1.9GB (1cm voxels) for the same sequence. �is is well
within the limits of modern graphics cards (12 GB for GTX Titan X).
We also give the amount of memory required to store and manage
the TSDF (Rec) and to run the camera pose optimization, both for

Fig. 12. Comparison to the VoxelHashing approach of Nießner et al. [37]: in
contrast to the frame-to-model tracking of VoxelHashing, our novel global
pose optimization implicitly handles loop closure (top), robustly detects and
recovers from tracking failures (middle), and greatly reduces local geometric
dri� (bo�om).

the sparse term (Opt-s) and the dense term (Opt-d). �e footprint
for storing the SIFT keypoints and correspondences (included in
Opt(s)) is negligibly small; i.e, 31mb for Apt 0. �e longest recon-
structed sequence (home at scan1 2013 jan 1) is part of the SUN3D
dataset [57], consisting of 14785 frames (≈ 8.2 minutes scan time
@30Hz). �is sequence has a CPU memory footprint of 34.7GB
and requires 7.3GB of GPU memory (4mm voxels) for tracking and
reconstruction.

Recovery from Tracking Failure. If a new keyframe cannot be
aligned successfully, we assume tracking is lost and do not integrate
surface measurements. An example scanning sequence is shown
in Fig. 6. To indicate tracking failure, the reconstruction is shown
with a gray overlay. Based on this cue, the user is able to recover
the method by moving back to a previously scanned area. Note that
there is no temporal nor spatial coherence required, as our method
globally matches new frames against all existing data. �us, scan-
ning may be interrupted, and continued at a completely di�erent
location.

Loop Closure Detection and Handling. Our global pose optimiza-
tion approach detects and handles loop closures transparently (see
Fig. 13), since the volumetric scene representation is continuously
updated to match the stream of computed pose estimates. �is
allows incrementally �xing loop closures over time by means of
integration and de-integration of surface measurements.

Precision and Recall of Loop Closures. Tab. 2 gives the precision
(i.e., the percentage of correct chunk pair correspondence detections
from the set of established correspondences) and recall (i.e., the
percentage of detected chunk pair correspondences from the set
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Fig. 13. Global pose optimization robustly detects and resolves loop closure. Note, while data is first integrated at slightly wrong locations, the volumetric
representation improves over time as soon as be�er pose estimates are available.

Table 2. Loop closure precision and recall on the synthetic augmented
ICL-NUIM Dataset [4].

Si� Raw Si� + KF Si� + Verify Opt

Living 1 Precision (%) 27.0 98.0 98.2 100
Recall (%) 47.5 40.3 39.5 39.3

Living 2 Precision (%) 25.3 92.1 92.4 100
Recall (%) 49.3 47.4 45.9 45.7

O�ce 1 Precision (%) 14.1 97.7 99.6 100
Recall (%) 49.1 48.7 48.0 47.7

O�ce 2 Precision (%) 10.9 90.2 96.2 100
Recall (%) 46.0 42.4 42.1 42.0

Fig. 14. Comparison of di�erent voxel resolutions: 4mm voxel resolution
(le�) leads to higher-fidelity reconstructions than the coarser 1cm resolution
(right). Note the generally sharper texture and the more refined geometry
in case of 4mm voxels.

of ground truth correspondences), on the loop closure set of the
augmented ICL-NUIM dataset. A chunk pair correspondence is
determined to be in the ground truth set if their geometry overlaps
by ≥ 30% according to the ground truth trajectory, and a proposed
chunk pair correspondence is determined to be correct if it lies in the
ground truth set with reprojection error less than 0.2m, following
[4]. We show our registration performance a�er running the SIFT
matcher (Si� Raw), our correspondence �lters described in Sec. 4.1.1
– the Key Point Correspondence Filter (SIFT + KF) and the Surface
Area and Dense Veri�cation (SIFT + Verify) –, and the �nal result
a�er the optimization residual pruning described in Sec. 4.4.1 (Opt).
As can be seen, all steps of the globally consistent camera tracking
increase precision while maintaining su�cient recall.

Dense Tracking and Voxel Resolution. In Fig. 10, we evaluate the
in�uence of the dense tracking component of our energy function.
While globally dri�-free reconstructions can be obtained by sparse
tracking only, the dense alignment term leads to more re�ned local
results. �e impact of voxel resolution on reconstruction quality is

shown in Fig. 14. As a default, we use a voxel resolution of 4mm for
all reconstructions. While 1cm voxels reduce memory consumption,
the quality of the reconstruction is slightly impaired.

�antitative Comparison. We quantitatively evaluate our approach
on independent benchmark data and compare against state-of-the-
art online (DVO-SLAM [23], RGB-D SLAM [8], MRSMap [46], Kintin-
uous [51], VoxelHashing [36, 37], ElasticFusion [54]) and o�ine
systems (Submap Bundle Adjustment [29], Redwood [4]). Note that
for Redwood, we show results for the rigid variant, which produced
be�er camera tracking results. We �rst evaluate our approach on
the ICL-NUIM dataset of Handa et al. [17], which provides ground
truth camera poses for several scans of a synthetic environment.
Table 3 shows our trajectory estimation performance, measured
with absolute trajectory error (ATE), on the four living room scenes
(including synthetic noise), for which we out-perform existing state-
of-the-art online and o�ine systems. Additionally, in Table 4 we
evaluate our approach on the RGB-D benchmark of Sturm et al [47].
�is benchmark provides ground truth camera pose estimates for
hand-held Kinect sequences using a calibrated motion capture sys-
tem. For these sequences, which only cover small scenes and simple
camera trajectories, our results are on par with or be�er than the
existing state of the art. Note that our own sequences have a larger
spatial extent and are much more challenging, with faster motion
and many more loop closures.

For these datasets (Tables 3 and 4), the Redwood system, which
relies solely on geometric registration, su�ers from the relative lack
of varying views in the camera trajectories. In particular, fr3/nst is
a textured wall, which cannot be registered with a geometric-only
method. On both these datasets, we also quantitatively validate the
relevance of our design decisions. While online alignment based
on sparse features only (Ours (s)) achieves reasonable results, using
dense matching only in per chunk alignment further increases ac-
curacy (Ours (sd)). Our full sparse and dense matching approach on
both local and global level leads to the highest accuracy.

Parameters. While we report default parameters for the Structure
Sensor, other RGB-D sensors maintain di�erent noise characteristics,
and we vary several parameters accordingly. For signi�cant depth
noise, we allow dense veri�cation and residual pruning to be more
lax, so as to not acquire too many false negatives. �at is, for Kinect
data we have a dense reprojection threshold of 0.3m and prune
residuals > 0.16m, and for the (noisy) synthetic ICL-NUIM data we
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Table 3. ATE RMSE on the synthetic ICL-NUIM dataset by [17].

kt0 kt1 kt2 kt3
DVO SLAM 10.4cm 2.9cm 19.1cm 15.2cm

RGB-D SLAM 2.6cm 0.8cm 1.8cm 43.3cm
MRSMap 20.4cm 22.8cm 18.9cm 109cm

Kintinuous 7.2cm 0.5cm 1.0cm 35.5cm
VoxelHashing 1.4cm 0.4cm 1.8cm 12.0cm
Elastic Fusion 0.9cm 0.9cm 1.4cm 10.6cm

Redwood (rigid) 25.6cm 3.0cm 3.3cm 6.1cm
Ours (s) 0.9cm 1.2cm 1.3cm 1.3cm

Ours (sd) 0.8cm 0.5cm 1.1cm 1.2cm
Ours 0.6cm 0.4cm 0.6cm 1.1cm

Note that unlike the other methods, Redwood does not use color information and runs
o�ine. For our approach, we also provide results for sparse-only (s) as well as sparse

and local dense only (sd).

Table 4. ATE RMSE on the TUM RGB-D dataset by [47].

fr1/desk fr2/xyz fr3/o�ce fr3/nst
DVO SLAM 2.1cm 1.8cm 3.5cm 1.8cm

RGB-D SLAM 2.3cm 0.8cm 3.2cm 1.7cm
MRSMap 4.3cm 2.0cm 4.2cm 201.8cm

Kintinuous 3.7cm 2.9cm 3.0cm 3.1cm
VoxelHashing 2.3cm 2.2cm 2.3cm 8.7cm
Elastic Fusion 2.0cm 1.1cm 1.7cm 1.6cm

LSD-SLAM - 1.5cm - -
Submap BA 2.2cm - 3.5cm -

Redwood (rigid) 2.7cm 9.1cm 3.0cm 192.9cm
Ours (s) 1.9cm 1.4cm 2.9cm 1.6cm

Ours (sd) 1.7cm 1.4cm 2.8cm 1.4cm
Ours 1.6cm 1.1cm 2.2cm 1.2cm

Note that unlike the other methods listed, Redwood does not use color information
and runs o�ine. For our approach, we also provide results for sparse-only (s) as well

as sparse and local dense only (sd).

have a dense reprojection threshold of 0.1m and prune residuals
> 0.08m.

Limitations. As our tracking is based on sparse key point match-
ing, small local misalignments can occur; e.g., SIFT matches can be
o� by a few pixels and the depth data associated with a keypoint
may be inaccurate due to sensor noise. While we solve for optimal
keypoint positions from the inter-chunk optimization, small mis-
matches between global keypoints can still be propagated within
the global optimization, leading to local misalignments. Ideally, we
would treat the locations of the global keypoints as unknowns to
optimize for. Unfortunately, this would involve signi�cant compu-
tational e�ort, which (currently) seems to exceed even the compu-
tational budget of o�ine approaches. Another limitation is that we
currently run our method on two GPUs. Fortunately, we can easily
stream the data to and from an iPad with live visual feedback, on
both the desktop and mobile device, thus making scanning fun and
convenient. With our current hardware con�gurations, we are lim-
ited to scans of up to 25,000 input RGB-D frames. �is corresponds
to about 14 minutes of continuous scanning, assuming 30Hz input
– although many RGB-D sensors have a lower frame rate which

allows for longer sessions. In order to allow for longer sequences,
we would need more than two hierarchy levels to perform the op-
timization in real time. We could also imagine spatial clustering
– e.g., into separate rooms – and split up the optimization tasks
accordingly.

7 ADDITIONAL EVALUATION

Table 5. Dataset overview.

#Frames Trajectory Length
Apt 0 8560 89.4m
Apt 1 8580 91.8m
Apt 2 3989 87.5m

Copyroom 4480 24.4m
O�ce 0 6159 52.8m
O�ce 1 5730 51.7m
O�ce 2 3500 36.3m
O�ce 3 3820 66.8m

In order to capture scans at high completeness, the camera is moved in long and
complex trajectories.

7.1 Additional �alitative Results
Reconstructed models for the eight scenes in our dataset are publicly
available 3. While our method and ElasticFusion run at real-time
rates, Redwood runs o�ine, taking 8.6 hours for Apt0, 13.2 hours
for Apt1, 4 hours for Copyroom, 7.7 hours for O�ce1, 2.6 hours for
O�ce2, and 3.5 hours for O�ce3. �e relocalization (due to sensor
occlusion) in the sequence Apt 2 cannot be handled by state-of-the-
art methods such as ElasticFusion and Redwood. Redwood is also a
geometry-only approach that does not use the RGB channels. Note
that the lack of ElasticFusion results on some sequences is due to
the occasional frame jump in our wi� streaming setup, which dense
frame-to-model methods cannot handle.

We additionally evaluate our method on the SUN3D dataset [57],
which contains a variety of indoor scenes captured with an Asus
Xtion sensor. Fig. 15 shows reconstruction results for several large,
complex scenes, using the o�ine SUN3Dsfm bundle adjustment
system as well as our approach. Note that our approach produces
be�er global structure while maintaining local detail at real-time
rates. �e SUN3D dataset also contains eight scenes which contain
manual object-correspondence annotations in order to guide their
reconstructions; we show reconstruction results using our method
(without annotation information) on these scenes in Fig. 16.

In addition, we have reconstructed all 464 scenes from the NYU2
dataset [43], which contains a variety of indoor scenes recorded by
a Kinect. Several reconstruction results are shown in Fig. 17.

7.2 Additional �antitative Results
�e ICL-NUIM dataset of Handa et al. [17] also provides the ground
truth 3D model used to generate the virtually scanned sequences.
In addition to the camera tracking evaluation provided in Section
6 of the paper, we evaluate surface reconstruction accuracy (mean
distance of the model to the ground truth surface) for the living
room model in Table 6.
3h�p://www.graphics.stanford.edu/projects/bundlefusion/
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Fig. 15. Reconstruction results on scenes from the SUN3D dataset [57], using SUN3Dsfm and our approach.
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Fig. 16. Reconstruction results on eight scenes from the SUN3D dataset [57], chosen from the List of Annotated Scenes (our method is fully automated and
does not use any annotations).
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Fig. 17. Reconstructions from the NYU2 dataset [43].
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Additionally, we further evaluate our camera tracking on the aug-
mented ICL-NUIM dataset of [4], which comprises synthetic scans
of two virtual scenes, a living room and an o�ce, from the original
ICL-NUIM data. In contrast to the original ICL-NUIM, these scans
have longer trajectories with more loop closures. Table 7 shows our
trajectory estimation performance on this dataset (with synthetic
sensor noise, using the reported camera intrinsic parameters), which
is on par with or be�er than existing state of the art. Although the
camera trajectories are complex, the additional loop closures help
maintain stability (as frames �nd matches which are not neighbors,
mitigating tracking dri�), aiding our performance in all scenes ex-
cept O�ce 1. In this case, our method has di�culty closing the loop,
as part of it covers a wall with li�le to no color features.

In Table 8, we show the number of frames registered for each our
captured sequences, as well as for the augmented ICL-NUIM and
various SUN3D sequences. Our method registers the vast majority
of frames in these sequences, only dropping frames when they fail to
pass our correspondence �lters, which err on the conservative side.
Many of the unregistered frames listed contain sensor occlusions
(for the Apt 2 relocalizations) or untextured walls, indicating that our
correspondence and frame �ltering �nds a good balance between
discarding potentially bad matches and retaining good matches to
maintain stable tracking.

Table 6. Surface reconstruction accuracy on the synthetic ICL-NUIM
dataset by [17].

kt0 kt1 kt2 kt3
DVO SLAM 3.2cm 6.1cm 11.9cm 5.3cm

RGB-D SLAM 4.4cm 3.2cm 3.1cm 16.7cm
MRSMap 6.1cm 14.0cm 9.8cm 24.8cm

Kintinuous 1.1cm 0.8cm 0.9cm 24.8cm
Elastic Fusion 0.7cm 0.7cm 0.8cm 2.8cm

Redwood (rigid) 2.0cm 2.0cm 1.3cm 2.2cm
Ours 0.5cm 0.6cm 0.7cm 0.8cm

Mean distance of each reconstructed model to the ground truth surface. Note that
unlike the other methods listed, Redwood does not use color information and runs

o�ine.

Table 7. ATE RMSE on the synthetic augmented ICL-NUIM Dataset by [4].

Living room 1 Living room 2 O�ce 1 O�ce 2
Kintinuous 27cm 28cm 19cm 26cm
DVO SLAM 102cm 14cm 11cm 11cm
SUN3D SfM 21cm 23cm 24cm 12cm

Redwood 10cm 13cm 6cm 7cm
Ours 0.6cm 0.5cm 15.3cm 1.4cm

Note that unlike the other methods listed, Redwood does not use color information
and runs o�ine.

7.3 SIFT Performance
We provide an additional performance analysis of our GPU-based
SIFT detection and matching strategy, see Table 9. Note that for a
1296 × 968 image (another Structure sensor color resolution), SIFT
detection time increases slightly to ≈ 6.4ms. We detect ∼ 150
features per frame, and ∼ 250 per keyframe, for all sequences.

Table 8. Frame Registration and Missed frames.

#Frames #Unregistered Frames
Apt 0 8560 0
Apt 1 8580 82
Apt 2 3989 115

Copyroom 4480 0
O�ce 0 6159 105
O�ce 1 5730 1
O�ce 2 3500 0
O�ce 3 3820 42

SUN3D (avg) 5100 6
Livingroom 1 (A-ICL) 2870 1
Livingroom 2 (A-ICL) 2350 0

O�ce 1 (A-ICL) 2690 94
O�ce 2 (A-ICL) 2538 0

Frames registered by our method on various sequences. �e unregistered frames are
those which did not �nd su�cient sparse matches; i.e., untextured walls or frames in
which the depth sensor was occluded. For instance, in Apt 2, we occlude the sensor

with our hand to demonstrate our relocalization ability, which leads to a higher
unregistered frame count. Note that the SUN3D frame registration is reported for the
average of the scenes shown in Figs. 15-16, and that A-ICL refers to the Augmented

ICL-NUIM dataset.

Table 9. SIFT performance for a 640 × 480 image.

#Features Time Detect (ms) Time Match (ms)
150 3.8 0.04
250 4.2 0.07
1000 5.8 0.42

Detection time (including descriptor computation) is reported per frame, and match
time per image pair (parallelized). On all sequences run, we detect about 150 features

per frame, and about 250 per keyframe.

8 CONCLUSION
We have presented a novel online real-time 3D reconstruction ap-
proach that provides robust tracking and implicitly solves the loop
closure problem by globally optimizing the trajectory for every
captured frame. To this end, we combine online SIFT feature ex-
traction, matching, and pruning with a novel parallel non-linear
pose optimization framework, over both sparse features as well as
dense correspondences, enabling the solution of the global align-
ment problem at real-time rates. �e continuously changing stream
of optimized pose estimates is monitored and the reconstruction
is updated through dynamic integration and de-integration. �e
capabilities of the proposed approach have been demonstrated on
several large-scale 3D reconstructions with reconstruction quality
and completeness that was previously only possible with o�ine
approaches and tedious capture sessions. We believe online global
pose alignment will pave the way for many new and interesting ap-
plications. Global accurate tracking is the foundation for immersive
AR/VR applications and makes online hand-held 3D reconstruction
applicable to scenarios that require high-�delity tracking.
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