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This paper proposes a real-time method that uses a single-view RGBD input
to simultaneously reconstruct a casual scene with a detailed geometry model,
surface albedo, per-frame non-rigid motion and per-frame low-frequency
lighting, without requiring any template or motion priors. The key observa-
tion is that accurate scene motion can be used to integrate temporal infor-
mation to recover the precise appearance, whereas the intrinsic appearance
can help to establish true correspondence in the temporal domain to recover
motion. Based on this observation, we �rst propose a shading-based scheme
to leverage appearance information for motion estimation. Then, using the
reconstructed motion, a volumetric albedo fusing scheme is proposed to
complete and re�ne the intrinsic appearance of the scene by incorporating
information from multiple frames. Since the two schemes are iteratively
applied during recording, the reconstructed appearance and motion become
increasingly more accurate. In addition to the reconstruction results, our
experiments also show that additional applications can be achieved, such
as relighting, albedo editing and free-viewpoint rendering of a dynamic
scene, since geometry, appearance and motion are all reconstructed by our
technique.
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1 INTRODUCTION
Dynamic scene reconstruction involves capturing and reproducing
various aspects of the real visual world, including static geometry,
detailed motion, and intrinsic or observed appearance. Simultane-
ously reconstructing all of these aspects or even part of them enables
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Fig. 1. Our system can capture fast and natural motions, geometry, and sur-
face albedo and simultaneously render them in new lighting environments
in real time.

important applications in computer vision and graphics. For exam-
ple, reconstructed geometry and surface motion as well as observed
appearance can be used for free-viewpoint video. Reconstructed
kinematic motion can be transferred to new objects or used to gen-
erate new photo-realistic animations. The intrinsic appearance of a
dynamic scene/object can be used in applications such as appearance
editing and relighting. The real-time reconstruction of geometry,
motion and appearance enables more realistic rendering for virtual
reality scenarios, for example, Holoportation [7].

Although considerable e�orts have been devoted to dynamic
scene reconstruction, the problem remains challenging because of
the extraordinarily large solution space, necessitating a carefully
designed capture environment [5, 34], high-quality lighting equip-
ment [3, 9] and many video cameras [15]. Several recent works
have successfully eliminated various constraints on acquisition by
using convenient capture equipment, such as a single Kinect [32] or
binocular camera [37]. However, they require many scene priors to
constrain the problem space, such as pre-scanned model templates
[32, 37], �nely embedded skeletons [37] and pre-captured lighting
environments [37].

The work on DynamicFusion [23] represents a step forward in dy-
namic scene reconstruction. This work uses a single depth sensor to
fuse scene geometry from multiple frames during non-rigid registra-
tion processing, thereby gradually obtaining a static model with �ne
geometry details and a motion sequence that matches the non-rigid
motion in the scene. However, it has two major drawbacks. First, it
does not recover the appearance and lighting information of a scene;
thus, it does not yield a complete reconstruction of the visual infor-
mation of the scene. Second, it uses only geometric information to
estimate inter-frame motions based on the slow motion assumption,
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which restricts its application to only slow and controlled motions
in a scene. Recently, a concurrent work VolumeDeform [14] has
been proposed that uses image features to improve motion estima-
tion. However, even with sparse features, the applicability of this
technique is still restricted to slow and controlled motions, and it
also does not reconstruct appearance or lighting information.

In this paper, we propose a novel method in which the surface
geometry, motion and intrinsic appearance (albedo) of a dynamic
scene are jointly estimated. Our system utilizes both geometry and
appearance information to estimate inter-frame motions; thus, it is
able to handle casual motions. Our system requires only a single
RGBD sensor; hence, it is very convenient to set up. Moreover, our
technique requires no prior knowledge of the scene; consequently,
it has no pre-computation step and is fully automatic. Finally, our
system is performed in real time, and thus, it is applicable for online
applications.

Similar to [41] in handling static scene reconstruction, our key
observation is that, on the one hand, to achieve appearance recon-
struction for a dynamic scene from a single-view input, information
from multiple frames of a sequence needs to be integrated to achieve
a complete reconstruction that is robust to noise. However, accurate
integration strongly depends on accurate temporal correspondence
among frames, and the geometry-based ICP method is far from
achieving accurate correspondence. On the other hand, intrinsic
appearance is an important cue for establishing correspondence be-
cause it does not change over time. Essentially, intrinsic appearance
recovery and correspondence estimation are highly correlated in the
context of dynamic scene reconstruction, and our key concept is to
leverage one to jointly achieve the other in the tracking procedure.

We thus propose a uni�ed optimization procedure to introduce
albedo information (intrinsic appearance) into motion reconstruc-
tion, thereby enabling more accurate estimation of the correspon-
dence between the reconstructed geometry and the input depth/color.
Given the reconstructed correspondence, a gradually re�ned sur-
face albedo is obtained by integrating information from multiple
frames via the proposed volumetric albedo optimization procedure.
With the iteratively optimized motion and appearance, the system
achieves full visual reconstruction of a dynamic scene and has the
ability to handle challenging motions, such as the stretching of cloth,
object interactions, fast boxing and other casual motions.

In this paper, we present a novel method that can simultaneously
fuse object geometry and surface albedo for a non-rigid scene in
real time. The speci�c contributions of our technique include the
following:

• Accurate and robust surface registration for non-rigid sur-
face reconstruction in real time. By exploiting dense shad-
ing information, our system establishes temporally consis-
tent geometric and photometric correspondences for casual
motion reconstruction and consequently outperforms the
previous methods proposed in [14, 23].

• Temporally coherent albedo estimation and fusion in real
time. Our system decomposes the photometric information
for each frame into albedo and low-frequency environmen-
tal lighting and then fuses multiple frames to re�ne the

surface albedo based on temporally coherent correspon-
dences, thereby enabling applications such as relighting
and appearance editing.

2 RELATED WORK
The reconstruction of dynamic 3D scenes in the real world is a widely
investigated topic in computer vision and graphics. With multi-view
inputs and controlled environmental lighting, the dynamic geometry
of a scene can be reconstructed via the shape-from-silhouette, multi-
view stereo or photometric stereo technique [3, 20, 29, 34]. To better
constrain the solution space, some methods utilize shape templates
for captured objects. Thus, dynamic scene reconstruction becomes a
shape-tracking problem [1, 2, 5]. Furthermore, because the motion of
a human character always follows a skeleton structure, a pre-de�ned
skeleton can be embedded into a surface template to realize character
motion driven by joint rotations [21, 33, 44]. Note, however, that all
these techniques require either a controlled environment or careful
initialization, which signi�cantly limits their applications.

In addition to accurate depth acquisition [25, 40], performance
capture can also be achieved using consumer depth sensors. Ye and
Yang [45] used a Gaussian mixture model in which an articulated
deformation model was embedded. Wu et al. [37] further utilized pre-
captured surface re�ectance and environmental lighting to achieve
detailed surface reconstruction. However, the purpose of these tech-
niques is to reconstruct characters with skeleton structures, such as
humans. It is di�cult to extend these techniques to general objects.

In the literature, surface deformation techniques have been pro-
posed in which the skeleton restriction is removed to achieve the
reconstruction of general objects. Li et al. [17] and Zollhöfer et
al. [48] reconstructed non-rigid motions using ICP-de�ned corre-
spondence and local rigid motion priors. Guo et al. [10, 11] further
used an L0-based motion prior to obtain improved results for artic-
ulated objects. Zhang et al. [46] trained a parametric pose model
and used it in shape estimation for humans. Although these tech-
niques achieve accurate dynamic reconstruction for a large variety
of motions, they still require an initial geometry prior.

To further eliminate the dependency on geometry priors, some
techniques attempt to directly reconstruct water-tight surfaces from
a dynamic scene. Liao et al. [19] focused on handling continuous and
predictable motions by stitching together partial surfaces obtained
from multiple frames. Li et al. [18] achieved the accurate reconstruc-
tions of loose cloths but permitted only smooth pose changes among
multi-view scans. However, non-rigid registration techniques, which
generally assume multi-view scans [28] or involve additional mo-
tion priors [35], are also applicable to this task. Recently, based on
single-view depth inputs, �ne 3D models have been reconstructed
without any motion priors by gradually fusing multi-frame geome-
tries whose relative motions have been e�ectively removed [8, 23].
Using these techniques, it is possible to eliminate the static modeling
step prior to non-rigid motion reconstruction. The concurrent work
by [14] has added SIFT features to the ICP registration framework,
thereby improving the accuracy of motion reconstruction. Note
that neither of these recent techniques [14, 23] using a single depth
sensors seeks correct correspondence to ensure high-quality appear-
ance reconstruction. By contrast, in this paper, we demonstrate a
technique for more accurate non-rigid motion reconstruction in real
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Fig. 2. Overview of our proposed pipeline. The green box represents the optimization of the motion field and the environmental lighting, and the red box
represents the updating of the geometry and albedo of the canonical model.

time based on jointly solving for and leveraging the surface albedo,
and we show that this accurate motion reconstruction technique
enables competent texturing and relighting applications.

In addition to surface geometry and motion reconstruction, a rich
body of work on appearance reconstruction also exists. The major-
ity of these works focus on static objects. A comprehensive survey
can be found in [6]. Moreover, some recent works have achieved
accurate reconstruction with simple setups [41–43]. For dynamic
scenes, Theobalt et al. [31] estimated a parametric BRDF model for
a dynamic human body under calibrated lights. Li et al. [16] recon-
structed motion, appearance and lighting using a multi-view camera
array and an initial shape template. Imber et al. [13] also utilized
multi-view input to reconstruct intrinsic textures without a smooth
prior in the temporal domain. Taheri et al. [30] jointly optimized
albedo and face pose by utilizing information from multiple video
frames. However, all these appearance-related reconstruction tech-
niques critically require pre-calibrated camera arrays, controlled
lighting conditions or temporal information.

3 OVERVIEW
Our system runs in a frame-by-frame manner to process an input
sequence. Fig. 2 illustrates the processing of one frame given previ-
ous frames. In our system, we represent the static model containing
both the geometry and surface albedo of the captured object in a
coordinate system de�ned in a frame called the canonical frame.
The �rst step of our system is the joint motion and lighting optimiza-
tion (Sec. 5.1), in which the non-rigid surface motion from the static
model to the current captured frame is estimated along with the low-
frequency environmental lighting of this frame. This is achieved
by �rst warping the static model using the reconstructed motion
from the previous frame, followed by solving a uni�ed optimization
problem to �t the current depth and color. Because both the light-
ing and motion are correlated with the observed appearance in the
image, a uni�ed framework facilitates convergence to the global
optimum through jointly solving for lighting and motion, and the re-
sults are consequently more consistent with the observed depth and
color. Compared with DynamicFusion, because shading information
is considered, temporal coherence (the temporal correspondence
between each pair of adjacent frames) is well preserved.

The second step is the static model update (Sec. 5.2). We warp
the static model using the newly solved motion and update the
warped static model with the current depth and color. As the low-
frequency lighting is solved for, the albedo is updated by solving a
volumetric optimization problem to �t the current observed image
and the original albedo as accumulated from previous frames. This
optimization makes the static model more complete because new
parts of the object can be observed as it moves. Furthermore, because
temporal consistency is preserved in the �rst step, this optimization
correctly fuses multi-frame observations, thereby making the result
more robust against noise and reconstruction errors. Finally, the
updated static model is warped back to the canonical frame to be
used in the processing of the next frame.

4 PRELIMINARIES
In this section, we present the symbols and other notation used in
this paper. To reconstruct a dynamic scene, a consumer RGBD sensor,
such as a Kinect or an Xtion sensor, is used to simultaneously record
a depth sequence {Dt } and a color sequence {Ct } (t indicates the
frame label). The two sequences are synchronized, and the sensor is
pre-calibrated; thus, the per-pixel correspondence between Dt and
Ct is obtained by default. The output of our system includes a fused
static model S of the captured object, the per-frame low-frequency
environmental lighting Lt and a per-frame motion �eldWt that
represents the non-rigid deformation between S and the real object
in each frame t .

We de�ne S = {V,A}, whereV and A represent the geometry
and appearance, respectively, of the captured object. The geometry
V is not represented as a set of surface points in 3D space but rather
as a truncated signed distance function (TSDF) [4] in a canonical
frame. We use the coordinate frame of the depth camera as the
canonical frame. Speci�cally, the canonical space is voxelized and
each voxel x is assigned a value indicating its signed distance to the
closest surface to it in the scene. Signed distances with values larger
than a threshold τ (set to 0.01m) are truncated to τ . Mathematically,
V = {[d (x) ∈ R,ω (x) ∈ R+]T}. Here, d (x) encodes the signed
distance value for voxel x, whereas ω (x) indicates the con�dence
of that value; further detailed are provided in Sec. 5.2.1. Following
[32, 38, 39], we assume the object surfaces to be predominantly
Lambertian, and the appearance A is represented by a set of RGB
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albedo vectors a(x) for the voxels in the canonical frame. Note that
the albedo represented on the voxels is used to interpolate the true
albedo on the object surfaces; thus, only voxels on or near object
surfaces have valid albedo values. The reason for using a volumetric
data structure to represent the geometry is that compared with a
mesh data structure, a regular volumetric structure is more suitable
for parallel memory allocation and access on a GPU. It also enables
more e�cient geometric operations (e.g., normal calculations) on a
GPU. These characteristics help to achieve real-time performance.

The environmental lighting Lt is represented by spherical har-
monics (SH) [26]. For Lambertian surfaces, we use only the �rst nine
SH basis functions, which correspond to the low-frequency lighting
and provide a good approximation of Lambertian re�ectance [12].
With this representation, the re�ected irradiance B of a voxel x is
expressed as follows:

B (x) = a(x)
b2∑
m=1
`mHm (nx). (1)

Here, {Hm } represents the SH basis functions,nx denotes the normal
of voxel x, and the {`m } are the SH coe�cients that de�ne the
environmental lighting. b = 3 means that we consider only SH basis
functions of up to the 2nd order.

We follow DynamicFusion [23] in representing the motion �eld
Wt by a graph-based motion representation, which can e�ectively
represent non-rigid deformation for a surface of any shape and can
be applied to deform voxels. Speci�cally,Wt = {[pj ∈ R3,σj ∈
R+,Tj ∈ SE(3)]T}, where j denotes the index of the jth node in graph
G. pj is the position of the jth node, and σj is a radius parameter
related to the weight with which the jth node in�uences voxel x.
This weight is de�ned as w j (x,σj ) = exp (− 


x − pj





2
/(2σ 2j )). σj

is a prede�ned parameter. Finally, Tj is the 6D transformation (3D
translation and 3D rotation) of the jth node. Details regarding how
to generate the graph G from the geometryV and how to update
G for an updatedV can be found in [23].

5 METHOD
We now describe the overall method of our system. First, we pro-
pose a novel uni�ed framework for estimating the motion �eld and
low-frequency environmental lighting for each captured frame. In
this framework, the static model S as well as the low-frequency
environmental lighting Lt−1 and the motion �eld Wt−1 of the
previous frame t − 1 are used to estimate Lt andWt based on the
input depth Dt and the color Ct of the current frame t (Sec. 5.1).
Through the integration of shading information, this step jointly
achieves lighting estimation and more accurate motion reconstruc-
tion. Subsequently, Dt and Ct are used to update the geometryV
and the appearance A of the static model S (Sec. 5.2). Bene�ting
from the coherent temporal correspondence, this fusion makes S,
which will subsequently be used in the processing of the next frame,
more complete and more robust to input noise and reconstruction
errors. Finally, we introduce our real-time solver (Sec. 5.3) and some
details of the implementation (Sec. 5.4).

5.1 Joint Motion and Lighting Optimization
As previously mentioned, our system operates based on a tracking
procedure. Therefore, for frame t , we have the current static model
S in the canonical frame (obtained by fusing the information from
previous frames), the low-frequency environmental lighting Lt−1
and the motion �eldWt−1. Using the newly recorded color and
depth in frame t , the algorithm presented in this section reconstructs
Lt andWt to �t the current shape and appearance of object. For
this purpose, we propose a novel uni�ed optimization framework
based on a graph-based motion representation. The optimization is
achieved by minimizing an energy function, which is formulated as
follows:

Etotal (W
t ,Lt ) = ωdEdepth +ωsEshading +ωmEmreg +ωlElreg, (2)

where Edepth and Eshading are data terms that constrain the result
to be consistent with the depth and color input, Emreg regularizes
the resolved motion to be as locally rigid as possible, and Elreg is a
temporal smoothing regularization that is applied to the environ-
mental lighting because lighting typically does not change abruptly
over time.

Prior to solving the energy function, we �rst extract a surface
meshM from the current static model S and interpolate the albedo
values for all vertices. Additionally, the motion graph G is obtained
via graph generation or graph updating [23].

Edepth represents a point-to-plane energy term [17], as follows:

Edepth (W
t ) =

∑
(v,ut )∈P

(nTut (v
′ − ut ))2, (3)

where v is a vertex onM and v′ is the transformed vertex de�ned by
the formula v′ =

∑
j w j (v,σj )T tj v. T tj is the transformation of the

jth node in frame t , which will be solved for during the optimization
process. ut is a 3D point obtained by projecting a pixel in the depth
frame Dt back into the 3D camera space, and nTut represents its
normal. P contains all correspondence pairs.

To obtain the correspondence P , we �rst calculate M̂ by deform-
ingM using the current estimated motion �eld Ŵ . Then, we render
M̂ with respect to the depth camera to label the visible vertices as
V t
D . Without loss of generality, we can always treat the camera as

�xed by regarding the camera motion as part of the global motion of
the captured object. In this way, the rendering is achieved by directly
projecting the deformed model M̂ using the intrinsic matrix Kd of
the depth camera. Finally, for each v in V t

D , if a valid ut exists with
the same image coordinates in Dt , then the pair (v,ut ) is treated
as a correspondence and stored in P . This scheme, which is based
on projective ICP [27], guarantees the real-time performance of our
method.
Eshading is an SH shading term that is formulated as follows:

Eshading (W
t ) =

∑
v∈V t

C




C
t (Mc (v′)) − Bt (v′)





2
2 , (4)

where V t
C is the set of all visible vertices obtained by projecting M̂

using the projection matrix of the color camera, Mc ; Ct (Mc (v′)) is
the projected color of vertex v′ in the tth color frame; and Bt (v′)
is the SH shaded irradiance of this vertex, which has already been
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Fig. 3. Scheme of the joint motion and lighting optimization process. The
first column shows the input geometry, albedo and low-frequency lighting
from the previous frame. The last column shows the geometry and albedo
a�er warping using the motion field Wt and the lighting Lt that have
been determined based on the input color and depth of the current frame.

de�ned in Eqn. 1. By including this term, we ensure that our op-
timization can more accurately estimate the inter-frame motion
because the appearance of an object never changes over time. Note
that because we assume the object surfaces to be purely di�use, low-
frequency lighting represented by the �rst nine SH coe�cients is
su�cient to model the lighting and shading of a pixel using Eqn. 1.
We believe that more sophisticated appearance models, such as
SVBRDF [41], may yield better results and allow the handling of
more general objects. However, it is not trivial to apply these models
in such a system, where geometry, lighting and appearance are all
treated as unknowns. Furthermore, real-time performance becomes
more di�cult to maintain.
Emreg is an as-rigid-as-possible regularizer, as follows:

Emreg (W
t ) =

∑
j ∈G

∑
i ∈Nj




T
t
j pj −T

t
i pj





2
2 , (5)

where Nj denotes the set of neighboring nodes of the jth node.
This term avoids over�tting to the noisy depth input. Furthermore,
because we use only a single-view input, some object regions will
not be captured by the sensor. If these regions already exist in S,
then this regularization term is important for ensuring that they
will move with the visible regions as rigidly as possible.

Elreg stabilizes the lighting by constraining it to be similar to the
lighting in the previous frame:

Elreg (L
t ) =

b2∑
i=1




`
t−1
i − `ti





2
2 . (6)

To minimize the energy in Eqn. 2, we propose a two-step iterative
algorithm that alternately updatesWt and Lt . The initial values
of the unknowns Ŵ and L̂ are set toWt−1 and Lt−1, respectively.
The �rst step of the iterative procedure is to solve a geometry align-
ment problem with known and �xed lighting. The second step is to
solve a shading optimization problem to recover the low-frequency
lighting for a given motion �eld. This joint optimization scheme is
illustrated in Fig. 3.

5.1.1 Motion Estimation. In the �rst step of the two-step itera-
tive procedure, we estimate a non-rigid deformation de�ned on G,
which deformsM to align with the input depth and color, for �xed
environmental lighting {`m } and vertex albedos {av}. Because the
lighting is �xed, ωl = 0 in Eqn. 2. We also set ωd = 1, ωs = 0.0001,
and ωm = 5 in all of our experiments to balance the in�uence of
these terms.

With these settings, the minimization of Eqn. 2 becomes an op-
timization on the motion parameters XG = {ξ j }j ∈G (i.e., the 6D
rotation and translation parameters for all nodes), which is a non-
linear least-squares problem. We solve this problem through Gauss-
Newton iterations. In each iteration, the problem is linearized around
the transformations from the previous iteration. Then, a linear prob-
lem is solved to obtain the updated transformations for the current
iteration.

Speci�cally, we use the twist representation [22] to represent
the 6D motion parameters of each node, denoted by ξ j . We use an
exponential map to convert ξ j into an SE(3) transformation matrix,
i.e., Tj = e ξ̂ j . In each Gauss-Newton step, we represent the update
of the motion parameters of each node as a twist update (denoted
by ζj ) around the current estimated deformation and linearize the
energy formulation around ζj = 0. The linearization relies on a
�rst-order Taylor expansion of the exponential map for the twist
update, de�ned as follows:

e ζ̂j ≈ I + ζ̂j =
*....
,

1 −γj βj tjx
γj 1 −α j tjy
−βj α j 1 tjz
0 0 0 1

+////
-

. (7)

Here, we de�ne ζj = [α j , βj ,γj , tjx , tjy , tjz ]T to denote the 6 trans-
formation parameters of node j. Given this linearization, we can
express the position v′ and the normal nv′ as linear functions of the
transformation parameters of all nodes, denoted by ZG = [ζj ]Tj ∈G .
After further linearization of the color frame Ct (Mc (v′)) via Tay-
lor expansion in the image domain, we have the following fully
linearized problem:

JTJx̂ = JTb, (8)
where x̂ = ZG . After solving for x̂, we update {Tj } for all nodes as
follows:

T ′j = e ζ̂jTj , (9)
whereTj is the latest 4×4 transformation matrix for node j from the
previous iteration andT ′j is the updated transformation matrix. Then,
we perform the same expansion in the subsequent iterations. Details
concerning this linearization can be found in [22, 39]. To achieve
real-time performance of our overall system, we implement it using
a highly e�cient GPU-based scheme, which will be introduced in
Sec. 5.3.

5.1.2 Lighting Estimation. In the second step of the two-step
iterative procedure, we solve for the low-frequency environmen-
tal lighting Lt with a given motion �eld and albedo. The energy
function to be optimized, expressed in Eqn. 2, has only two terms:
Eshading and Elreg. We set ωd = 0, ωs = 1.0 and ωm = 0. Note that
we allow lighting changes in the scene; thus, ωl is set to a relatively
small number (because Elreg is considerably smaller than Eshading,

ACM Transactions on Graphics, Vol. XX, No. X, Article XX. Publication date: March 2017.



XX:6 • Kaiwen Guo, Feng Xu, Tao Yu, Xiaoyang Liu, Qionghai Dai, and Yebin Liu

Fig. 4. Motion estimation with shading information: (a) input color and
depth images, (b) the reconstructed result obtained using the shading term
and its color-coded residual compared with the input color image, (c) the
reconstructed result obtained without the shading term (DynamicFusion)
and its corresponding residual, and (d) the reconstructed result obtained
using feature matching information (VolumeDeform) and its corresponding
residual. The residuals are calculated as the per-pixel Euclidean distances
of the RGB values. Each color channel is normalized to [0,1].

we use 105 for ωl .). The minimization of Eqn. 2 thus becomes a
linear least-squares problem. We perform parallel reduction on a
GPU, download the coe�cients of the system to a CPU, and solve
the problem using SVD factorization.

As stated previously, our iterative optimization algorithm utilizes
shading information to more accurately estimate scene motions.
As shown in Fig. 4, when the captured actor is stretching the cloth
downward, our method successfully reconstructs the motion, which
cannot be recovered without the shading term because the tradi-
tional ICP algorithm does not provide the correct correspondences.
We observe that in the result obtained without the shading term,
the position of the cloth texture does not match the input image. An
alternative solution is to use image feature matching to guide the
motion estimation, as recently proposed by [14]. Although this ap-
proach considers color information, because the image features are
generally sparse and strongly depend on the texture in the scene, it
still achieves only limited improvement for this challenging motion,
as shown in Fig. 4(d).

5.2 Static Model Update
In this subsection, we discuss how to update the static model S in
the canonical frame using the input depth and color from the tth
frame, the reconstructed low-frequency environmental lighting Lt
and the motion �eldWt (shown in Fig. 5). In the following, we
introduce how to updateV and A.

5.2.1 Geometry Update. To update V in the canonical frame,
following the method presented in [23], we warp each canonical
voxel into the current frame, project it into the depth map, and
update the TSDF value and weight. However, this scheme does not
inherently handle voxel collisions (see bag open and close sequence
for an example of voxel collisions); instead, it generates erroneous
surfaces within the colliding voxels. The reason is that voxels near
but outside one surface in the canonical frame will be warped close
to the depth of the other surface when two surfaces come close to

Fig. 5. Scheme of the static model update procedure. The first row shows
the geometry update, and the second row shows the albedo update.

colliding in the live frame. In this case, the SDFs of the voxels are
updated based on the depth, and an erroneous surface is generated
in the canonical frame, as shown in Fig. 6(d).

To solve this problem, we borrow the idea of [7] to detect colliding
voxels by checking whether a voxel is moving to the same position
as another, non-neighboring voxel in the live frame. Speci�cally, we
�rst voxelize the live frame into regular voxel cells. Then, we check
whether more than one voxel in the canonical frame is moving to the
same voxel cell in the live frame. If so, all these voxels are labeled
as colliding voxels. In [7], colliding voxels with relatively small
absolute SDF values are still updated in the live frame; however,
when the two surfaces come into contact with each other, these
voxels can still be updated based on the depths of surfaces that are
far from them in the canonical frame, thus generating erroneous
surfaces. To overcome this problem, in our method, we use a more
strict approach in which SDF updating is prevented for all colliding
voxels to achieve collision handling, as shown in Fig. 6(b, c).

5.2.2 Albedo Update. After the geometry update, we apply a
novel optimization scheme to update the albedo values at voxels
rather than vertices. This is because our basic geometry representa-
tion is a TSDF de�ned on voxels. Thus, it is more direct and e�cient
to update the albedo values on the voxels. The energy function is
formulated as follows:

Ealbedo (A) = Evshading +wasEasreg +watEatreg. (10)

The shading term Evshading is similar to Eshading but is expressed on
voxels:

Evshading =
∑

x∈V t
M

ϕ (n(xt ) − c(xt )) 


C
t (Mc (xt )) − Bt (x)





2
2 . (11)

This term constrains the voxel albedo to be consistent with the
color frame under the estimated environmental lighting. Here, we
de�ne V t

M as {x| ���psdf
t (x)��� < 0.5τ } to guarantee that only voxels

that are close to visible surfaces in frame t are considered in the
optimizations. This is done for two reasons. First, the motion of
the voxels is interpolated from the motions of nodes on the visible
surfaces; thus, the motions obtained for voxels that are close to these
surfaces will be more accurate. Second, albedo is essentially de�ned
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Fig. 6. Illustration of collision detection. (a) shows the detected colliding
voxels in the canonical frame, where the color indicates the density of the
colliding voxels. (b) and (c) show the reconstructed results obtained with
collision detection in the canonical and live frames, respectively. (d) and (e)
show the reconstructed results obtained without collision detection in the
canonical and live frames, respectively. Note that erroneous surfaces are
generated because of the incorrect TSDF updating of the colliding voxels.

on surfaces. It is not reasonable to update albedo values for voxels
that are far from surfaces. Here, xt represents voxel x deformed by
Wt ; ϕ (x ) is the Huber kernel, which is used to control the weights
based on n(xt ), the normal of voxel xt , and c(xt ), the direction
from xt to the camera center. The idea is that when the normal of
a voxel is quite di�erent from the projection direction, it is likely
that a small error in the voxel position or the camera parameters
will cause a foreground voxel to be projected to a background pixel.
To mitigate this e�ect, we reduce the weight in this situation.

The purpose of Eatreg is to maintain the temporal coherence of
the albedo, and it is de�ned as follows:

Eatreg =
∑

x∈V t
M∩V

t−1
M




a
t−1 (x) − at (x)




2
2 . (12)

In practice, we set wat to a relatively large value (wat = 100,
whereas was = 1) because the albedo of ordinary objects does not
change over time. However, this is not a hard constraint. The reason
is that images may contain noise, and the motion and lighting may
not be perfectly estimated. Fusing the results from multiple frames
will make the result more accurate and robust. As is demonstrated
in the results section, with the accumulation of frames, the albedo
becomes increasingly more feasible and stable.

We also follow [47] in including a spatial smoothing constraint
on the albedo, as follows:

Easreg =
∑

x∈V t
M

∑
z∈N (x)∩V t

M

ϕ (Γ(xt ) − Γ(zt )) 


a
t (x) − at (z)




2
2 . (13)

Here, Γ(xt ) = Ct (Mc (xt ))/I t (Mc (xt )) denotes the chromaticity of
the pixel corresponding to voxel x, and I t (Mc (xt )) represents its
illumination attribute [40].

Because Ealbedo is a quadratic energy function when xt and {`m }
are �xed, at (x) is calculated by solving a linear system.

5.3 E�icient Gauss-Newton Solver
Here, we introduce how to implement a highly e�cient Gauss-
Newton solver on a GPU for solving Eqn. 8. Similar to the previ-
ous real-time solution [48], we use the preconditioned conjugate
gradient (PCG) method. To save memory when storing J and JT,
Zollhöfer et al. [48] implemented two sparse matrix-vector multi-
plication (SpMV) kernels to calculate Jz and JTz on the �y. Here,
z represents an arbitrary vector with the corresponding number

of dimensions. The drawback of this implementation is that calcu-
lating J in each PCG iteration incurs considerably more repeated
computations and accesses to global memory. This is not tolerable
in our method for two reasons. First, our shading term involves
much more computation for calculating Jz and JTz and requires
more access to global memory. Second, the di�erence in the number
of �oating-point operations between the depth data term and the
shading term causes workload imbalance and thread divergence for
the warps in each CUDA block, which dramatically decreases the
performance.

To overcome these drawbacks, we return to explicitly calculat-
ing JTJ, following the method used in [24]. Speci�cally, we treat
JTJ ∈ R6N×6N as an N × N matrix with block elements Bi j ∈ R6×6.
As mentioned in [24], the bene�t of this block structure is that all
Bi j s can be constructed in parallel. In particular, Bi j is related to
nodes i and j and is nonzero if nodes i and j together contribute
to at least one constraint in Eqn. 2 and can be calculated indepen-
dently from other blocks. Otherwise, Bi j is a zero block. In each ICP
iteration, the indices of the nonzero blocks of Bi j do not change;
thus, we pre-calculate the nonzero pattern via fast GPU radix sort
and use it to construct JTJ for all inner PCG iterations. In our im-
plementation, we calculate each nonzero block in one CUDA block
using warp-level reduction. Since modern GPU architectures in-
clude many register resources, we exploit the on-chip registers and
use warp shu�e instructions to accelerate block reduction for each
Bi j . This provides a fast solution for communication within one
warp and also increases GPU occupancy. For the core solver, we use
the kernel-merged PCG solver used in a previous work [36]. Again,
we implement the solver at the warp level and tune it for maximum
e�ciency. This PCG solver is also used to calculate the solution to
Eqn. 10.

5.4 Implementation Details
System Pipeline. Our pipeline consists of three components: the
front end, a solvers-and-integration module and a rendering com-
ponent. The front end fetches synchronized depth-color pairs, ex-
ecutes bilateral �ltering on the depth maps, generates vertex and
normal maps from depth maps, and removes mismatched pixels
at the boundaries of the depth and color maps. The solvers-and-
integration module �rst executes the rigid projective ICP processing
and then optimizes both the motion �eld and the lighting coe�-
cients. After updating the camera pose, this module also non-rigidly
fuses the depth data into the canonical volume and solves the opti-
mization problem for updating the albedo volume. The rendering
component executes the marching cube algorithm on the TSDF vol-
ume and then extracts a triangle surface for rendering. These three
components run asynchronously and exchange data via semaphores
and bu�ers. Most of the technical aspects of these components are
implemented on a GPU. The linear and non-linear solvers are im-
plemented using the CUDA API, which provides more convenient
intrinsics for warp-level optimization. The TSDF and albedo integra-
tion and the rendering techniques are implemented using GLSL and
the OpenGL API. We constrain the maximum processing time of
each component to guarantee a 30 Hz output frequency, matching
the output frequency of the sensor.
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Initialization. Here, we discuss how to initialize the �rst input
frame, for whichS,Wt−1 andLt−1 are unknown. By assuming {Tj }
inW0 to be the identity matrix, we can directly use the depth frame
D0 to estimate the TSDF values ofV0 using the method described
in Sec. 5.2.1. Because L0 is still unknown, we then extract the object
surface fromV0 and estimate L0 with a �xed uniform albedo [47]
using the method presented in Sec. 5.1.2. The chosen albedo value
also determines the scale of the albedo in Eqn. 1, which contains a
scale ambiguity. Subsequently, we use the estimated L0 andV0 to
estimate the initial albedoA0 via the method introduced in Sec. 5.2.2.
OnceW0, L0 and the static model S have been reconstructed, the
subsequent frames can be processed using our tracking procedure
as introduced previously.
Back Reconstruction for Free-viewpoint Video Rendering. In

the real-time processing chain described above, the reconstructed
geometry is accumulated frame by frame; thus, the reconstructed
surface may not be complete, particularly for early frames. Once
the entire sequence has been processed, we can use the �nal recon-
structed static model SF to back reconstruct the entire sequence
to obtain an as-complete-as-possible reconstruction for all frames.
This is achieved by deforming SF using the calculated warping
motion for each frame. Note that in the early frames, only some
of the nodes (observed nodes) exist, and no motions are associated
with the missing nodes in these frames. We use dual-quaternion
blending to propagate the motions of the observed nodes to the
missing nodes based on the Euclidean distances between nodes.
Because the missing nodes generally lie in invisible regions, which
we assume do not exhibit independent motions but instead merely
follow the motions in the visible regions, our dual-quaternion blend-
ing does not generate noticeable artifacts in the �nal results of our
experiments. Fig. 17 shows the rendering of a free-viewpoint video
from a novel viewpoint opposite to the captured view.

6 RESULTS
In this section, we demonstrate the e�ectiveness of the two key
components of our method, namely, the joint motion and lighting
optimization, which reconstructs more accurate surface motions,
and the static model update, which achieves the decomposition of
lighting and albedo and gradually improves the albedo quality by
fusing information from multiple frames. For motion reconstruction,
we compare our results with those of the recent methods Dynamic-
Fusion [23] and VolumeDeform [14]. We present the results obtained
on various motion sequences, followed by several applications, in-
cluding relighting, free-viewpoint video and albedo editing. Finally,
we discuss the limitations of our technique.

Performance.Our system is fully implemented on a single NVIDIA
GeForce GTX TITAN X graphics processing unit using both the
OpenGL API and the NVIDIA CUDA API. The host con�guration is
a 3.2 GHz 4-core Xeon E3-1230 with 16 GB of memory. The pipeline
runs at 32 ms per frame, of which 23 ms is devoted to the joint
motion-lighting optimization and albedo update, 5 ms is used for
TSDF integration, and 4 ms is allocated for all other operations.
For all of our sequences, the processing time for one frame is less
than 32 ms. Therefore, we lock the frame rate of our system to 30
Hz, matching the sensor’s frame rate. The pipeline also includes
the preprocessing of each depth and color image, including the

Fig. 7. Comparisons with DynamicFusion and VolumeDeform. (a) Input
color images; (b-d) the reconstructed results of our method, DynamicFusion
and VolumeDeform, respectively. The first image in the last row contains a
sub-image that shows the texture of the umbrella. The results presented in
the first 3 rows of (d) were provided by the first author of VolumeDeform.
The other results for DynamicFusion and VolumeDeform were produced
using our implementations based on these methods.

bilateral �ltering and the calculation of image gradients. For the
joint motion and lighting optimization, we alternate twice between
shading-based registration and the calculation of the lighting coe�-
cients. The shading-based registration involves 3 ICP iterations. The
working volume is set to 1.2 m3 for the backpack and walking ted
sequences and to 1.0 m3 for the rest. For all cases, the resolutions of
the TSDF and the albedo volume are both 2 mm. The node sampling
radius is 25 mm. The number of nodes can be up to 3K for half body
motion.

6.1 Evaluation
Because we reconstruct the motion, albedo and low-frequency light-
ing of a scene, we evaluate our method with respect to all three of
these aspects.

Motion. Our method considers shading information during mo-
tion reconstruction and detects colliding voxels to handle collisions;
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thus, more accurate and robust reconstructions are achieved com-
pared with previous state-of-the-art methods, including Dynam-
icFusion and VolumeDeform. Note that our reconstructed results,
shown in the following �gures and the accompanying videos, were
obtained by relighting the reconstructed geometry and albedo using
the estimated lighting in the corresponding frames.

Fig. 7 compares our method with the other two methods on var-
ious sequences. The top row shows a case of surface collision. As
shown, the previously developed methods generate erroneous sur-
faces, whereas our method achieves the correct reconstruction. The
second and third rows show cases of casual boxing motion and fast
loop closure, respectively. Because our algorithm uses the shading
information, we succeed in reconstructing the motion, whereas the
other methods generate noticeable artifacts. The fourth row shows
a case of tangential motion, in which a board is facing the camera
and moving upward. DynamicFusion fails because the geometry
does not provide su�cient information to indicate the tangential
motion, and VolumeDeform also fails because no features suitable
for matching can be extracted from the simply textured board. By
contrast, our method reconstructs the motion correctly because it
bene�ts from the shading information.

The last row in Fig. 7 compares the motion reconstructions for
a rotating umbrella with spatially varying colors. Because the ro-
tation cannot be detected from pure geometry, we rendered the
reconstructed appearance to display in the �gure. For DynamicFu-
sion and VolumeDeform, because these methods do not reconstruct
texture or albedo, we directly fused the captured colors to gener-
ate textured results. We can clearly observe that the texture of the
umbrella is heavily blurred in the results of DynamicFusion and
VolumeDeform, whereas our result is consistent with the input. The
results presented in Fig. 4 con�rm that to achieve plausible texture
or albedo rendering, the reconstructed motion needs to be accurate.
Our method represents a substantial improvement over the state-of-
the-art methods in this respect, thereby enabling surface texturing
and relighting applications.

We also numerically compare the three methods in terms of ge-
ometry based on the results of rendering a pre-reconstructed 3D
motion to obtain ground-truth depth and color frames as input.
Two frames of the sequence are shown in Fig. 8. Compared with
the ground truth, our method demonstrates considerably better
geometry reconstruction compared with both DynamicFusion and
VolumeDeform. Both of the latter methods fail to reconstruct this
dynamic scene because of complex object collisions. The average
geometry errors for the entire sequence are also presented in Tab. 1.

Our Method DynamicFusion VolumeDeform
error (mm) 1.036 109.567 84.245

Table 1. Average numerical errors on the bag open and close sequence. We
calculate the errors only for the visible surface regions.

Albedo. After the joint motion and lighting optimization, our
method further factors out the estimated environmental lighting
and reconstructs the surface albedo via the albedo update scheme.
Fig. 9 shows the estimated albedo and lighting for an input color
image. We can clearly observe that the shading component, which

Fig. 8. �antitative comparison of our results with the ground truth for
the bag open and close sequence. (a), (b) and (c) present the results of our
method, DynamicFusion and VolumeDeform, respectively. The 1st and 2nd
rows present the geometry and error maps, respectively, for frame 191, and
the 3rd and 4th rows present the geometry and error maps, respectively,
for frame 277. The results for DynamicFusion and VolumeDeform were
produced using our implementations based on these methods.

Fig. 9. Example of albedo reconstruction: (a) input image, (b) reconstructed
albedo, and (c) reconstructed surface normal and lighting.

leads to spatial variations in the color of the pillow in the color
image, has been factored out in our estimated albedo map.

Furthermore, bene�ting from the correctly reconstructed motions,
we can align multiple frames and use their integrated information
to fuse the surface albedo. As an increasing number of frames are
observed and incorporated, our fused albedo becomes increasingly
more robust to noise and errors. Fig. 10 summarizes this process. As
shown in this �gure, with frame accumulation, not only does the
geometry gradually become more complete but the quality of the
albedo also improves.

An alternative solution for albedo fusion is to directly blend the
reconstructed per-frame albedos. The blending weights could be
de�ned similarly to the weights used in geometry fusion. This alter-
native solution does not require an optimization step; however, it
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Fig. 10. Process of albedo fusion. Top row: selected sequential frames in a
sequence. Bo�om row: the corresponding static models S in the canonical
frame.

Fig. 11. Validation of our albedo fusion scheme: (a) depth input, (b) color
input, (c) the result of our scheme, and (d) the result of direct albedo aver-
aging.

Fig. 12. Low-frequency lighting reconstruction: (a) ground-truth lighting,
(b) low-frequency component of the ground-truth lighting, and (c) our
reconstructed low-frequency lighting.

does not generate results that are as good as our solution. Fig. 11
presents a comparison of the two solutions. Because our algorithm
assigns lower con�dences to albedos with surface normals orthogo-
nal to the camera direction and considers the spatial consistency of
the albedo, it generates visually pleasing albedo fusion results. Con-
versely, albedo blending incorporates the texture of the background
into the foreground object and generates a result with spatially
inconsistent albedo.
Lighting. The low-frequency environmental lighting is a byprod-

uct of our method that is used in both motion estimation and albedo
extraction. To test the accuracy of this component, we compare
our result with the ground truth for a scene with spatially varying
lighting conditions (shown in Fig. 12). Note that we reconstruct the
low-frequency environmental lighting using only the �rst nine SH
coe�cients. From this comparison, we observe that our result gener-
ally matches the ground truth. The corresponding motion sequence
from this experiment is shown in the accompanying video.

Fig. 13. Reconstructed low-frequency lighting, albedo and geometry for
a scene with time-varying lighting. Top row: input images. Middle row:
reconstructed geometry and albedo. Bo�om row: estimated low-frequency
lighting.

Bene�ting from the lighting estimation, our method can be ap-
plied to scenes with time-varying lighting. As shown in Fig. 13, our
method successfully factors out the lighting in the scene and esti-
mates both the albedo and geometry of the moving object. Note that
the reconstructed albedo is both spatially and temporally consistent
in the results. The sequence result is shown in our accompanying
video.

6.2 Results
We present the results of running our algorithm on sequences with
various casual motions, including body motion, cloth motion, object
manipulation and loop closure. Some intermediate frames are shown
in Fig. 14. We also present sequence results in the accompanying
video. We also ran our system on sequences of publicly available
data from [14], and the corresponding results are also shown in
the accompanying video. Although we may observe holes in the
geometry or artifacts in the rendered images obtained through the
reconstruction procedure, as an increasing number of frames are
considered, these artifacts diminish by virtue of the integration of
additional information. This bene�cial behavior can be attributed
to the two key components of our method: the joint motion and
lighting optimization, which achieves the accurate estimation of
temporal correspondence, and the volumetric optimization scheme
for albedo updating, which fuses photometric information from
multiple frames to generate temporally coherent albedo model. We
also demonstrate our live system in the accompanying video. In
addition to real-time reconstruction, our system also supports real-
time relighting and interactions for rotating, scaling and translating
the reconstructed scene.

6.3 Applications
Because our algorithm reconstructs SF and per-frame motions, we
can relight a motion sequence using a given set of environmental
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Fig. 14. Images of the results of our method, which are shown as rendered appearances and shaded geometries.

Fig. 15. Selected frames in 3 relighted sequences.

Fig. 16. Relighting a scene with edited albedo under 4 di�erent lighting
conditions.

lighting coe�cients, perform appearance editing by changing the
albedo of object surfaces, and back reconstruct a sequence using
a more complete geometry model, thereby enabling high-quality
free-viewpoint video rendering. The results of such applications
are presented in the accompanying video and in Fig. 15, Fig. 16

Fig. 17. Comparison of the results of back reconstruction with partially
reconstructed results for the backpack sequence. (a) and (b) show compar-
isons of back-reconstructed results with our partially fused results at frame
160 and frame 490, respectively. The le� and middle figures in each group
show the partially reconstructed models produced by our algorithm in the
first pass rendered from the original camera view and a virtual view, respec-
tively. The right figure in each group shows the back-reconstructed model
produced from the final motion field generated in the first pass as rendered
from the same virtual view.

and Fig. 17. These results demonstrate that the simultaneous re-
construction of geometry, albedo and motion e�ectively enables
important applications in computer vision and graphics. Note that
these applications cannot be achieved using either DynamicFusion
or VolumeDeform because these methods do not reconstruct texture,
albedo or complex motions as our method does. Furthermore, since
the use of shading information in the joint optimization helps to
determine more accurate motions and thus to generate better geom-
etry and appearance models for a dynamic scene, our system can
also perform real-time 3D self-portraits. This application is demon-
strated in the Applications section of the primary accompanying
video.

6.4 Limitations
Our system is based on the Lambertian assumption, and thus, it
works well for casual lighting and di�use materials but not for high
specularity; see the artifacts in Fig. 18(a). Our system uses shading
information to better reconstruct motions, which is not applicable

ACM Transactions on Graphics, Vol. XX, No. X, Article XX. Publication date: March 2017.



XX:12 • Kaiwen Guo, Feng Xu, Tao Yu, Xiaoyang Liu, Qionghai Dai, and Yebin Liu

Fig. 18. Failure cases of our system: (a-c) input and reconstructed results
for cases of highlights, motion blur and object separation, respectively.

for objects with a purely uniform appearance. Our system is also
restricted by the capabilities of the sensor. For instance, the color
frames captured by the Xtion are still of low quality, which limits
the quality of our reconstructed albedo. Additionally, because the
utilized sensor runs at 30 FPS and with a 20-30 ms exposure time, our
system produces artifacts or even fails when tracking fast motions
because of the large inter-frame di�erences and severe motion blur
(as shown in Fig. 18(b)). Moreover, although the collision detection
approach is suitable for open-to-closed motions, the system still
cannot handle topological changes such as object separation and
closed-to-open motions (as shown in Fig. 18(c)).

7 CONCLUSION
In this paper, we have presented a novel real-time algorithm for
simultaneously reconstructing the geometry, albedo and motion
of a dynamic scene using a single RGBD camera. The proposed
method achieves temporal coherence and high-quality fusion of
both geometry and albedo by treating surface motion registration
and intrinsic surface estimation as optimization problems. With our
approach, we are able to conveniently produce competent results
on casual dynamic scenes using a single RGBD camera, without the
need for a controlled environmental setup, multi-view camera input
or highly skilled manual operations. Moreover, our method can
be extended by including sparse feature terms, e.g., a SIFT feature
term, to provide global anchors and to potentially achieve better
results for motions such as loop-closing motions. We believe that
our method represents a step toward enabling the use of consumer
depth cameras for a wider range of graphics and video applications,
such as 3D modeling, free-viewpoint video, video editing, motion
capture and animation.
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