Computer Vision Group = : ' “-m
Prof. Daniel Cremers " /"

Technische Universitat Munchen

Practical Course: Vision-based Navigation
Summer Semester 2019

Lecture 2. Camera Models and
Optimization

Vladyslav Usenko, Nikolaus Demmel,

Prof. Dr. Daniel Cremers



Contents

= Camera Intrinsic and Extrinsic

= From State Estimation to Least Squares
= Batch Least Square

=  Application: Camera Calibration



Contents

= Camera Intrinsic and Extrinsic

= From State Estimation to Least Squares
= Batch Least Square

=  Application: Camera Calibration



1. Camera intrinsic and extrinsic

" Go back to the first page:

L = f (33k;—1, ug, wk) Motion model

Zk,j = h (yja Lk, vk,j) Observation model

= Cameras give you the images of the world
= How are these pixels projected from the 3D environment?




1. Camera intrinsic and extrinsic

= Pinhole camera

By similar triangles:

Flip to the front:

zZ X Y

Rearrange it:

X/_ X
—JZ
r Y '
Y =fY

Focal length /‘

“*f\ Optical
- center

.]'

Camera’s frame O-x-y-z

Similar triangles

Pin-hole camera model




1. Camera intrinsic and extrinsic

= Pinhole cameras

From image plane e ]
to pixels: ge P2 -;
! p
u=aX +c, p!
BY’ 4 ¢ : Focal length /‘
v =, y <
' f Optical
X Sa
Take into: £ center
1 ¢ X
X' =7
Y = )7 y
) Similar triangles
Then we get Camera’s frame O-x-y-z g
w :
Pin-hole camera model




1. Camera intrinsic and extrinsic

= Pinhole models: u=f, X +c,
N fy}_Z: —|— Cy
= Matrix form: DUt 7 to lof
ut Z to left:
u fe 0 ¢, X u fz 0 e X
1 Al
v =§ 0 f, ¢y Y éZKP Zlov| = 0 f_y Cy Y éI{ID
1 00 1/\Z 1 0 0 1/)\Z

= K is called as intrinsic camera matrix
= Which is fixed for each real camera
= And can be calibrated before running slam.



1. Camera intrinsic and extrinsic

= Distance is lost during the projection

u fo 0 ¢ X
Zlv|=]0 f ||V |=KP
1 0O 0 1 Z
Unit plane

z=1

, Possible position of 3D point P
Pixel plane
Camera frame P /o.//

O_//__

<1 [+ "'

y




1. Camera intrinsic and extrinsic

= There’s another rotation and translation from the world to the
camera

u

ZPyw=72)| v | =K ((RP,+t)=KTP,,.

= Here R,t or T is called as extrinsic

= Note we assume the homogeneous coordinates are cast to non-
homogenous coordinates automatically

= |n SLAM, the extrinsic R,t is our estimate purpose



1. Camera intrinsic and extrinsic

= Summary
= Projection orders: world->camera->unit plane->pixels

Unit plane
=1

_ Possible position of 3D point P
Pixel plane
Camera frame P /o—///

O - —

s |

-1-
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1. Camera intrinsic and extrinsic

= Dijstortion

= Lens will cause distortion when you have a wide range lens

Wide range lens Fisheye cameras
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1. Camera intrinsic and extrinsic

= Distortion types: radial distortion and tangential distortion

T
t_‘ff_}_j;jr #_‘i_ _|1 ﬂ—v/?
T
RN -
Siaazins «i

Original image  Barrel distortion  Pincushion distortion

Image plane




1. Camera intrinsic and extrinsic
Distortion

= Mathematic form

Xdistorted = x(l + k17”2 + k27”4 + k3r6) Xdistorted — X + zplxy + P2 (rz + sz)
Ydistorted — y(l + k17‘2 + k27”4 + k3r6) Ydistorted — Y + P1 (rz + 23/2) + szxy
Radial distortion tangential distortion

= Put them together
Xgistorted = X(1 + kqr? + kor* + k3r®) + 2pyxy + po(r® 4 2x%)
Vaistortea = Y(1 + kyr? + kor* 4 k3r®) + py(r® + 2y%) + 2p,xy

= |n practice, you can choose the order of distortion params
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1. Camera intrinsic and extrinsic:
(Extended) Unified Camera Models

l—[fxafyacxacyaa ﬁ] (OARS [071]7ﬁ > 0
ad+(1 a)z 4 [Cx

o A fyaaur){ o)z Cy ’
1-a d=+/B(x2+y2)+22.
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1. Camera intrinsic and extrinsic:

Kannala-Brandt Model

i= [fmfwCX7Cy7k17k27k37k4]T
o\ _ fxd(e))_;f Cx
= (3000 [0

VX2 +y?%, 0 = atan2(r,z),

=
d(0)=0+k0°+k0° 4+ k0" 4 ks6°
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1. Camera intrinsic and extrinsic:
Double Sphere Camera Model

X

TC(X, i) _ [fxad2+(1a)(§d1+z)

e [

di = /x2+y2+ 2,
dy = \/x2+y2+ (Edy +2)?,

More info:

Vladyslav Usenko, Nikolaus Demmel, and Daniel Cremers. “The Double Sphere

Camera Model”. In: Proc. of the Int. Conference on 3D Vision (3DV). Sept.
2018. eprint: http://arxiv.org/abs/1807.08957.
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1. Camera intrinsic and extrinsic

= Stereo camera

= Two cameras (usually) placed horizontally

Left pix% Xﬁght pixel

~—— -
T

baseline
Geometric model
Left eye Right eye
= The distance between left camera center to the right is called as
baseline
= From geometricmodel: 22—/ _b-urtur o f—b d=u; —up.

z b d
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1. Camera intrinsic and extrinsic

Structured light

D
emit/ Pl \\riturn 4
0T

IR emitter IR receiver

Time-of-Flight

SIS

" impulse
emitter

impulse receiver

IR emitter

RGB camera
l IR receiver

-

RGB-D cameras




1. Camera intrinsic and extrinsic

= |mages
= 2D arrays stored in computer
= Usually 0-255 (1 byte) grayscale values after quantification

Origin x \ X-axis, width In each pixel

/
|| Grayscale image: 0-255 (1 byte)
; / Depth images: 0-65535 (2 bytes)
‘ i Color images: multiple channels

BGR, RGB, RGBA, etc

1 byte for each channel

Pixel coordinates (x,y)

Y-axis,
height /

B|G|r|B|G|R
F 24 bits —

Image
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2. From state estimation to least square

= Recall the motion model and observation model

.
Ll — f (wkt—la uktawk:)

. k. = h (yj7a:k77vkt,j)

= How to estimate the unknown variables given the observation data?
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2. Batch state estimation

Batch approa

ch

= Gijve all the measurements

= To estimate all the state variables

State variables:

Observation and input:

u= {u1;u2; "'};Z = {Zk,j}

Our purpose:

P(x|z,u).

Bayes’ Rule:

Likehood Priori

p(x|u,z) =

P(z|x,w)p(x|u)
P(z|u)

Posteriori
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2. From state estimation to least square

= |t is usually hard to write out the full distribution of Bayes’ formula,
but we can:

= MAP: Maximum A Posteriori
P(z|x,u)P(x|u)

P(z|u)
= argmaxP (z|x)P (x|u) t

Xpap = argm;le(x|u, Z) = argmax

S

Drop denominator because it
is not relevant with x

Drop u because z is not relevant with u

" “In which state it is most likely to produce such measurements”
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2. From state estimation to least square

= From MAP to batch least square

= We assume the noise variables are independent, so that the joint pdf
can be factorized:

K
Pz = | [Pz
k=0

= Let’s consider a single observation: 2 = h(y;, @) + v j,
= Affected by white Gaussian noise: vk,jNN(o, Qk,j)

= The observation model gives us a conditional pdf:
P(zjkler, y;) = N (h(y;, @), Qk,j) -
= Then how to compute the MAP of x,y given z?
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2. From state estimation to least square

= Gaussian distribution (matrix form)

P(@) = ————exp (5 =)= @ = n)).
JenY de(s)

P

= Take minus logarithm at both sides:

| —

—In(P(x)) = (z—p)' 7 (x—p).

&

b | =

In ((QW)Ndet(Z)) +

NS

Constant w.r.t x Mahalanobis distance (sigma-norm)

= Maximum of P(x) is equivalent to minimum of —In(P(x))
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2. From state estimation to least square

= Take this into the MAP:

Information matrix

Max: P(Zj3k|$kayj) =N (/1.(yj,113k), Qk,j) . /

T
— X, Yj = argmin <(Zk,j — h(}’j;xk)) Q]_l% (Zk,j — h(yj'xk))>

1

Error or residual of single observation

= We turn a MAP problem into a least square problem

26



2. From state estimation to least square

= Batch least square

= QOriginal problem Least square
Define the errors(residuals)

xp = [ (Tr_1, up, wy) Cok = @k — f (@h-1,ur)

ey‘j_]\, p— ZAJ — h (ml‘,: yj) ,

zrj =h(yj. xy, v )

Xpyap = argmaxP(z|x)P(x|u)

= Sum of the squared residuals:

: T p-1 T ~1
min J(x) = E :e'v,kRk €y k T E :E :ey,k,ij,jeyv"‘-J‘
k kg

27



2. From state estimation to least square

T p-1 T —1
J(@) =) el Rilewr+) D ey Qreyn
= Some notes: k kg

= Because of noise, when we take the estimated trajectory and map into
the models, they won’t fit perfectly

= Then we adjust our estimation to get a better estimation (minimize the
error)

= The error distribution is affected by noise distribution (information
matrix)

= Structure of the least square problem

= Sum of many squared errors

= The dimension of total state variable maybe high

= But single error item is easy (only related to two states in our case)

= |f we use Lie group and Lie algebra, then it’s a non-constrained least
square

28
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3. Batch least square

= How to solve a least square problem?
= Non-linear, discrete time, non-constrained

= Let’s start from a simple example

: o 1
= Consider minimizing a squared error: min J(x) = min§||f(x)||%
= When Jis simple, just solve:
d xr € R"”
g _,
dx

= And we will find the maxima/minima/saddle points

Local optima in neural networks

30



3. Batch least square /// —

7PN\
* Whenisa complicated function: HI(COYI)]

= dJ/dx=0 is hard to solve
= \We use iterative methods

= |terative methods

1. Start from a initial estimation xg

2. Atiteration k , we find a incremental Ax, to make ||f(x, + 4x,)|l5
become smaller

3. |IfAx, is small enough, stop (converged)

If not, set xx+1 = xx + 4x, and return to step 2.

31



3. Batch least square

= How to find the incremental part?
= By the gradient
= Taylor expansion of the object function:

|f(x+ Az)|3 ~ || f(x)||5 + J (x) Az + - AJ‘THAJ‘

Jacobian Hessian

= First order methods and second order methods
= First order: (Steepest descent)

rrﬂlgcnllf(x)llé + JAx Incremental will be:  Ax* = —J7 (x).

Usually we need a step size

32



3. Batch least square

= Zig-zag in steepest descent

Other shortcomings
' * Slow convergence speed
N * Slow when close to the minimum

45
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3. Batch least square

= Second order methods

: 1
[f(@+Az)3~ | f(@)]z+ T (x) Az + SAz" HAz.

= Solve an increment to minimize it:

1
Az* = argmin||f () |3 + J (z) Az + ;Az" HAz.

Let the derivative to 4x be zero, then we get: HAz =—J7T.

This is called Newton’s method
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3. Batch least square

= Second order method converges more quickly than first order
methods

= But the Hessian matrix maybe hard to compute: HAz = -J7T.

= Can we avoid the Hessian matrix and also keep second order’s
convergence speed?

= Gauss-Newton
= Levenberg-Marquardt

35



3. Batch least square

= Gauss-Newton
= Taylor expansion of f(x): flx+Az) = f(z) + J(x) Az.

= Then the squared error becomes:

| =

(f (@) + J () Az)" (f (z) + J (z) Az)

&

SF (@) + 7 (@) A =

NS

_ % (ILF @) +2/ (@) T(@)Az + AaT T (2)T T (@)Az)

= Also let its derivative with Ax be zero:

H g HAz = g.

36



3. Batch least square

J(x)" T (z) Aw = T ()" [ (x).
= Gauss-Newton use J(x)'J(x) as an approximation of the Hessian
= Therefore avoiding the computation of H in the Newton’s method

= But J(®)'/(x) is only semi-positive definite
= H maybe singular when JAT J has null space

37



3. Batch least square

= Levernberg-Marquardt method
= Trust region approach: approximation is only valid in a region
= Evaluate if the approximation is good:

p = fl@+Az)— | (a:). Real descent/approx. descent
J(x)Ax

= |frhois large, increase the region

= |f rhois small, decrease the region

1
= LM optimization: I}&?E 1f Ce) + T CadAx||?, st || Ax||? < p

= Assume the approximation is only good within a ball
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3. Batch least square

= Trust region problem:

1
min — ||f (i) +J Cad Axe||?, s. ¢ | A [|* < p
X 2

= Expand it just like in G-N’s case, the incremental will be:

JCe) J(x) + ADAxy, = g A1 Axg|I* =) =0

This Al increase the semi-positive definite property of the Hessian

= Also balancing the first-order and second-order items

39



3. Batch least square

= QOther methods
= Dog-leg method
= Conjugate gradient method
= Quasi-Newton’s method

Pseudo-Newton’s method

" You can find more in optimization books if you are interested

= |n SLAM, we use G-N or L-M to solve camera’s motion, pixel’s
movement, optical-flow, etc.

40



3. Batch least square

= Problem in the Practical Assignment
= Curve fitting: find best parameters a,b,c from the observation data:

Curve function: Yy = eXp(aI2 + bxr +¢) + w,

= Error: y
e; = y; — exp(ax? + bx; +c) | )
= |Least square problem:

ab,c

N o,
= argminz ly; — eXp(axiZ + bx; + C)||2 | o

=1

41



3. Batch least square

" You are asked to solve this problem with a ceres solver (tutorial)
= Google Ceres Solver http://ceres-solver.org/

42


http://ceres-solver.org/

3. Batch least square

= Google Ceres
= An optimization library for solving least square problems
= Tutorial: http://ceres-solver.org/tutorial.html|

= Define your residual class as a functor (overload the () operator)

struct ExponentialResidual {
ExponentialResidual(double x, double y)

Dx_(x), y_(y) {}

template <typename T>

bool operator()(const T* const m, const T* const c, T* residual) const {
residual[@] = T(y_) - exp(m[@] * T(x_) + c[©@]);
return true;

}

private:

// Observations for a sample.
const double x_;

const double y_;

s
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http://ceres-solver.org/tutorial.html

3. Batch least square

= Build the optimization problem:

double m = 0.0;

double c 0.0;

Problem problem;
for (int i = ©; i < kNumObservations; ++i) {
CostFunction* cost_function =
new AutoDiffCostFunction<ExponentialResidual, 1, 1, 1>(
new ExponentialResidual(data[2 * i], data[2 * i + 1]));
problem.AddResidualBlock(cost_function, NULL, &m, &c);

}

= With auto-diff, Ceres will compute the Jacobians for you

44 Dr. Jorg Stickler, Computer Vision Group, TUM



3. Batch least square

= Finally solve it by calling the Solve() function and get the result
summary

" You can set some parameters like number of iterations, stop
conditions or the linear solver type.

Solver::0Options options;
options.max_num_iterations = 25;
options. linear_solver_type = ceres::DENSE_QR;

options.minimizer_progress_to_stdout = true;

Solver: :Summary summary;

Solve(options, &problem, &summary):;
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3. Batch least square

= Summary

= |n the batch estimation, we estimate all the status variable given all the
measurements and input

= The batch estimation problem can be formulated into a least square
problem, after solving it we get a MAP estimation

= The least square problem can be solved by iterative methods like
gradient descent, Newton’s method, Gauss-Newton or Levernberg-
Marquardt method

= The least square problem can also be represented by a graph and forms
a (factor) graph optimization problem
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Application: Camera Calibration

Suppose we want to estimate the camera pose
We have several observations from the projection function

Minimizing the reprojection error:

N
1
(R,t) =T" = argminiz lu; — t(RP; + t)||5
i=1

= Where n(:) is the projection equation (observation model)
Corner points are detected using Apriltags
E. Olson. AprilTag: A robust and flexible visual fiducial sys-
tem. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), pages 3400-3407. IEEE,
May 2011.
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4. Application: Camera Calibration
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4. Application: Camera Calibration
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4. Application: Camera Calibration

= Use camera models presented here to get initial projections

= Use optimization method to find the camera poses and intrinsic
parameters

= Test different models. How well do they fit the lens?
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Questions?
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