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What We Will Cover Today
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• Introduction to Visual SLAM

• Formulation of the SLAM Problem

• Full SLAM Posterior

• Bundle Adjustment (BA)

• Structure of the SLAM/BA Problem



What is Visual SLAM?
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• Visual simultaneous localization and mapping (VSLAM)…
• Tracks the pose of the camera in a map, and simultaneously

• Estimates the parameters of the environment map (f.e. reconstruct 
the 3D positions of interest points in a common coordinate frame)

• Loop-closure: Revisiting a place allows for drift compensation
• How to detect a loop closure?

Image credit: Clemente et al., RSS 2007
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• Global vs. local optimization methods
• Global: bundle adjustment, pose-graph optimization, etc.

• Local: incremental tracking-and-mapping approaches, visual 
odometry with local maps. Often designed for real-time.

• Hybrids: Real-time local SLAM + global optimization in a slower 
parallel process (f.e. LSD-SLAM)



VO vs. VSLAM
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Structure from Motion
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• Structure from Motion (SfM) denotes the joint estimation of 
• Structure, i.e. 3D reconstruction, and

• Motion, i.e. 6-DoF camera poses,

from a collection (i.e. unordered set) of images 

• Typical approach: keypoint matching and bundle adjustment



Structure from Motion
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Agarwal et al., Building Rome in a Day, ICCV 2009, „Dubrovnik“ image set



VSLAM vs. SfM
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VSLAMSfM



Why is SLAM difficult?

Robotic 3D Vision

• Chicken-or-egg problem

• Camera trajectory 
and map are 
unknown and need 
to be estimated 
from observations

• Accurate 
localization requires 
an accurate map

• Accurate mapping 
requires accurate 
localization

camera
trajectory

map
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Why is SLAM difficult?

Robotic 3D Vision

• Correspondences
between observations and 
the map are unknown

• Wrong correspondences 
can lead to divergence of 
trajectory/map estimates

• Important to model 
uncertainties of 
observations and 
estimates in a probabilistic 
formulation of the SLAM 
problem

pose
uncertainty

observation

correspondence

map
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Definition of Visual SLAM
• Visual SLAM is the process of simultaneously estimating the egomotion of an 

object and the environment map using only inputs from visual sensors on the
object and control inputs

• Inputs: images at discrete time steps ,

• Monocular case: Set of images

• Stereo case: Left/right images ,

• RGB-D case: Color/depth images ,

• Robotics: control inputs

• Output: 
• Camera pose estimates in world reference frame.

For convenience, we also write

• Environment map
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Map Observations in Visual SLAM

• With we denote observations of the environment map in image , f.e.
• Indirect point-based method:                                              (2D or 3D image points)

• Direct RGB-D method:                              (all image pixels)

• ...

• Involves data association to map elements
• We denote correspondences by
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Probabilistic Formulation of Visual SLAM

Robotic 3D Vision

• SLAM posterior probability:

• Observation likelihood:

• State-transition probability:
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SLAM Graph Optimization

• Joint optimization for poses and map elements from image
observations of map elements

• Common map element
observations induce
constraints between
the poses

• Map elements correlate
with each others through
the common poses that
observe them

• No temporal sequence: Bundle Adjustment
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Probabilistic Formulation

• SLAM posterior:

• Observation likelihood:

• State-transition probability:

• SLAM posterior can be factorized:
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Factor Graph

• Factor graph representation of the full SLAM posterior
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Explicit Model
• noisy 2D point observation

of 3D landmarks in each image, 
known data association

• No control inputs

• Gaussian prior on pose

• Uniform prior on landmarks
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Full SLAM Optimization as Energy Minimization

• Optimize negative log posterior probability (MAP estimation)

• Non-linear least squares!! We know how to optimize this..

• Remark: noisy state transitions based on control inputs add
further residuals between subsequent poses
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Full SLAM Optimization as Energy Minimization

• Let‘s define the residuals on the full state vector

• Stack the residuals in a vector-valued function and collect the
residual covariances on the diagonal blocks of a square matrix

• Rewrite error function as
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Recap: Gauss-Newton Method
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• Idea: Approximate Newton’s method to minimize E(x)
• Approximate E(x) through linearization of residuals

• Find root of                                                          using Newton’s method, i.e.

• Pros:
• Faster convergence (approx. quadratic convergence rate)

• Cons:
• Divergence if too far from local optimum (H not positive definite)
• Solution quality depends on initial guess



Structure of the Bundle Adjustment Problem

• and sum terms from individual residuals:

• What is the structure of these terms?
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Structure of the Bundle Adjustment Problem

Robotic 3D Vision

dense vector
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Structure of the Bundle Adjustment Problem

Robotic 3D Vision

Diagonal, typically

Sparse!
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Example Hessian of a BA Problem

Robotic 3D Vision

Image source: Manolis Lourakis (CC BY 3.0)

Landmark
dimensions

Pose dimensions

(10 poses)

(982 landmarks)
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Exploiting the Sparse Structure

• Idea:
Apply the Schur complement to solve the system in a partitioned way

• Is this any better?
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Exploiting the Sparse Structure

• What is the structure of the two sub-problems ?

• Poses:

Robotic 3D Vision

Reduced pose Hessian
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Exploiting the Sparse Structure

• What is the structure of the two sub-problems ?

• Poses:

Robotic 3D Vision

Poses that observe landmark j
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Exploiting the Sparse Structure

• What is the structure of the two sub-problems ?

• Landmarks:

• Landmark-wise solution

• Comparably small matrix operations

• Only involves poses that observe the landmark
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Exploiting the Sparse Structure

Robotic 3D Vision

Image source: Manolis Lourakis (CC BY 3.0)
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Exploiting the Sparse Structure

• Reduced pose Hessian can still have sparse structure
• However: For many camera poses with many shared observations, the

inversion of the reduced pose Hessian is still computationally expensive!
• Exploit further structure, e.g., using variable reordering or hierarchical

decomposition

Robotic 3D Vision

Camera on a moving vehicle
(6375 images)

Flickr image search „Dubrovnik“
(4585 images)

Image from Agarwal et al., ICCV 2009
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Effect of Loop-Closures on the Hessian

Robotic 3D Vision

Band matrix
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Effect of Loop-Closures on the Hessian

Robotic 3D Vision

Not band matrix: costlier to solve
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Further Considerations

Robotic 3D Vision

• Use matrix decompositions (f.e. Cholesky) to perform inversions

• Levenberg-Marquardt optimization improves basin of
convergence

• Heavier-tail distributions / robust norms on the residuals can be
implemented using Iteratively Reweighted Least Squares

• Twists are also a suitable pose parametrization for bundle
adjustment: optimize increments on the twists

• Many further tricks to improve convergence/robustness/run-time 
efficiency, f.e.:
• Preconditioning

• Hierarchical optimization

• Variable reordering

• Delayed relinearization
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Triangulation
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• Goal: Reconstruct 3D point from 2D image
observations for known camera poses

• Linear solution: Find 3D point such that reprojections equal its
projections

• Each image provides one constraint
• Leads to system of linear equations , two approaches:

• Set             and solve nonhomogeneous system
• Find nullspace of using SVD 

• Non-linear solution: Minimize least squares
reprojection error (more accurate)

Triangulation
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Lessons Learned Today

Robotic 3D Vision

• SLAM is a chicken-or-egg problem:
• Localization requires map

• Mapping requires localization

• Unknown association of measurements to map elements

• Bundle Adjustment has a sparse structure that can be exploited
for efficient optimization

• Reduction of BA to pose optimization problem through
marginalization of landmarks (using the Schur complement)

• Loop closure constraints make SLAM optimization problem less
efficient to solve (but reduce drift!)
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Further Reading
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• Probabilistic Robotics textbook

• Triggs et al., Bundle Adjustment – A Modern Synthesis, 2002

Probabilistic Robotics, 
S. Thrun, W. Burgard, D. Fox, 
MIT Press, 2005
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Thanks for your attention!


