
Modelling Random Distributions - Hierarchial Graphical
Models

Unsupervised Machine Learning  Model a distribution from given
data

→

{ → P(x)xi}i∈I

Maximize the log-likelihood:

There are in general two modes to operate on such a given distribution:

Sampling:

Likelihood Evaluation:

Ideally both is feasible using the specific model.

LL(θ) = log(P(x|θ))∑
x∈Data

P(x) → x∼P(x)

x → P(x)
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Simplification of a probability distribution  Graphical Models

Directed Models vs Undirected Models: Bayesian Networks vs Markov Random
Fields

Using conditional independence of random variables (independence of single data dimensions)

Keeper feeling bad

ScoreFeeling good

→



This corresponds to modeling the distribution as a product of conditional distributions vs a product of random factors:

vs.

Both incorporate some (conditional) independencies of random variables (data dimensions).

In general the distributions look like:

Bayesian Network:

Markov Random Field:

P(ac,wf, dd, ac) = P(ac|wf, dd)P(dd|em)P(wf|em)P(em)

P(kfb, fg, sc) = ϕ(fg, sc)ϕ(kfb, sc)
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Boltzmann machines - model MRF logits  negative
interaction energies

Restricting the energy to quadratic terms is already a big simplification from  to  parameters. So larger

scale interactions are lost.

Two modes:

Likelihood evaluation: Hard to find partition sum 

Sampling: -> Gibbs sampling (Markov Chain Monte Carlo)

↔
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Gibbs sampling

Algorithm:

1. Take a random state  as initial state

2. Pick a random state index 

3. Draw a single variable  from the conditional distribution  given all current other variables

4. Replacing the modified variable leads the new state

Repeat this for a long time, the distribution then converges to the correct .
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Restricted Boltzmann machines

Separation into visible and hidden layer. Only interactions between those layers are allowed. The marginal distribution on

the visible units can then model richer interactions.

Also the conditional distributions are simple to evaluate (including normalization):

Hidden

Visible

P(v, h) = exp(− Wh − v − h)
1
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Sampling

Reminder:

Energy field model probability:

Bernoulli RBM

Gaussian Bernoulli RBM

With unit variance:

p(v,h; θ) = exp(−E(v,h; θ))
1
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In [1]: def reconstruct(self, data, n=1, std = 1, mean = 1, gaussian = False):
for i in range(n):

hcs = self.get_hidden_sample(data)
if gaussian:

data = self.get_visible_mean(hidden = hcs, gaussian = True)
else:

data = self.get_visible_sample(hcs)
return data



Contrastive divergence 

Learning

Iid. sample  from a data distribution.

Find model with parameters , such that it maximizes the log likelihood of measuring : .

Use gradient ascent learning for :

### Gradient ascent

with  and  This leads to:\

Thus, we get:

Problem: finding  requires finding Z, but Z is exponentially large in number of dimensions of v and h.

General idea

Approximate the true expectation of the model  with the probability distribution after k Gibbs steps , starting with

. The gradient steps:

New gradient follows approximately gradient of KL-divergence \ Advantage: \

It shows good results for models with feasible complexity.

Problem with contrastive divergence
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Graph illustrates, how a spurious mode is not caught in the negative phase of https://www.deeplearningbook.org

/contents/partition.html (https://www.deeplearningbook.org/contents/partition.html) \ The more complex the model, the

more likely/pronounced are spurious modes.

CD1



Contrastive persistent divergence

Instead of initializing the MCMC chain of the first gibbs step with data, it is initialized with the last state of the model. It only

works when the gradient step is small enough, that the equilibrium state of the last model is close the equlibrium state of

the next one.

DBN

N-2 directed layers

2 undirected layers at the top

For 3-layer DBN with  neurons,  and approximate distribution :

Training

At initialisation choose . Then the 3-layer DBN acts exactly like the RBM

by freezing  and maximizing , we are increasing .

maximizing  is done by training an RBM with input  and hidden units 

This process can be repeated for N total layers. ## Inference

Initialize the top two layers randomly\

run k gibbs step to get a sample according to probability function of the top RBM\

pass the activations of the unit layers wise down, according to the learned parameters of the RBMs\

The activation probability of the lowest RBM should be according to the probability distribution of the examples
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Deep Boltzmann machines

One can also expand Restricted Boltzmann machines to multiple layers. In this case intermediate layers depend on both

the upper and lower layer.

For training a Deep Boltzmann machine one can use an alternating scheme between even and odd layer updates.

Sources: \ [1] https://www.deeplearningbook.org/contents/generative_models.html (https://www.deeplearningbook.org

/contents/generative_models.html) \ [2] https://www.cs.toronto.edu/~hinton/absps/cdmiguel.pdf (https://www.cs.toronto.edu

/~hinton/absps/cdmiguel.pdf) \ [3] https://tspace.library.utoronto.ca/bitstream/1807/19226

/3/Salakhutdinov_Ruslan_R_200910_PhD_thesis.pdf (https://tspace.library.utoronto.ca/bitstream/1807/19226

/3/Salakhutdinov_Ruslan_R_200910_PhD_thesis.pdf)


