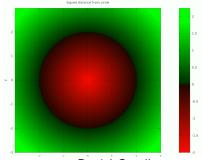
Real-Time Camera Tracking and 3D Reconstruction Using Signed Distance Functions

Ethan Tatlow

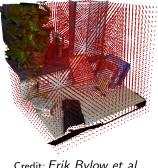
Technical University of Munich

April 15, 2020



- Title: Real-Time Camera Tracking and 3D Reconstruction Using Signed Distance Functions
- Published in 2013
- Authors:
 - Bylow, Erik
 - Sturm, Jürgen
 - Kerl, Christian
 - Kahl, Fredrik
 - Cremers, Daniel
- Features new real-time SLAM approach using an RGB-D sensor

Signed Distance Functions


- definition in 3D: $\psi : \mathbb{R}^3 \to \mathbb{R}$
- intuitive definition:
 "distance to nearest surface"
- sign of function:
 - negative inside objects
 - positive outside objects
 - 0 on object surface

Credit: Daniel Canelhas

Function Representation

- Purpose: representation of the geometry being mapped 0
- Voxel grids D, W of resolution m

Credit: Erik Bylow et al.

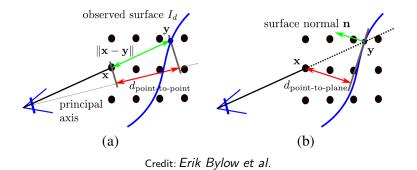
Camera Tracking

- Given: depth image, where
 - $I_d(i,j) = \text{depth of pixel } i, j$, and
 - $x_{ij} \in \mathbb{R}^3$ = local coordinate of the surface captured in pixel i, j
- Goal: find camera pose that maximises likelihood of observing depth:

$$p(I_d \mid R, t) \propto \prod_{i,j} \exp(-\underbrace{\psi(Rx_{ij}+t)}_{0 ext{ if correct pose}}^2)$$

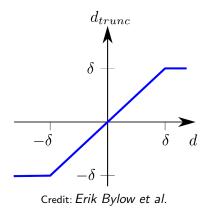
Optimisation Procedure

ТШП


• Corresponding error function to be minimised:

$$E(R,t) = \sum_{i,j} \psi(Rx_{ij} + t)^2$$

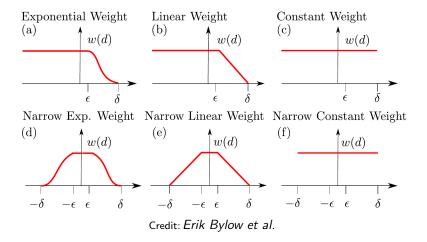
- Non-linear least-squares problem ⇒ Optimised using Gauss-Newton method
- Computation for each *i*, *j* of update-step in parallel on GPU


Distance Function Approximations

- Calculation of actual distance to nearest surface: expensive
- Instead ⇒ approximative distance functions:
 - projective point-to-point (a)
 - projective point-to-plane (b)

Distance Truncation

- Larger distances lead to less accurate approximations
- Mainly interested in zero-crossing of SDF
 - \Rightarrow Truncation of distance so that $|d| \leq \delta$



Weighting Functions

• distance values more reliable for voxels in front of the surface

Data Fusion and 3D-Reconstruction

ТШП

- **Given**: Distance + weighting measurements d_i , w_i for each observed frame *i*
- Goal: parametrise ψ to maximise observation likelihood for n observed frames:

$$p(d_1, w_1, ..., d_n, w_n | \psi) \propto \prod_{i=1}^n exp(-\frac{1}{2}w_i(\psi - d_i)^2)$$

• Reformulation and solving for max \Rightarrow closed form solution:

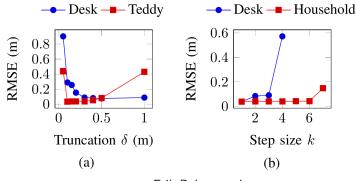
$$\psi = \frac{\sum_{i=1}^{n} w_i d_i}{\sum_{i=1}^{n} w_i}$$

 \Rightarrow Distance values as running weighted average:

$$D \leftarrow \frac{WD + w_{n+1}d_{n+1}}{W + w_{n+1}}$$

$$W \leftarrow W + w_{n+1}$$

Method Comparison: Accuracy


- Compared methods: Kinect Fusion and RGB-D SLAM
- Error metric: root mean square absolute trajectory error

Method	Res.	Teddy	F1 Desk	F1 Desk2	F3 Household	F1 Floor
KinFu	256	0.156 m	0.057m	0.420 m	0.064 m	Failed
KinFu Point-To-Plane	512 256	0.337 m 0.072 m	0.068 m 0.087 m	0.635 m 0.078 m	0.061 m 0.053 m	Failed 0.811 m
Point-To-Plane Point-To-Point	512 256	0.101 m 0.086 m	0.059 m 0.038 m	0.623 m 0.061 m	0.053 m 0.039 m	0.640 m 0.641 m
Point-To-Point Point-To-Point	230 512	0.080 m	0.038 m 0.035 m	0.061 m 0.062 m	0.039 m 0.040 m	0.567 m
RGB-D SLAM		0.111 m	0.026 m	0.043 m	0.059 m	0.035 m

Credit: Erik Bylow et al.

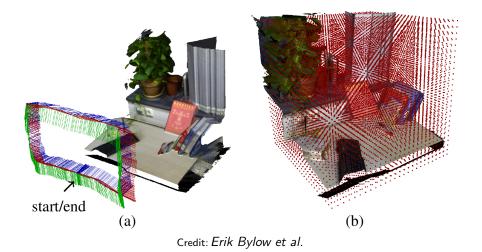
Truncation and Frame Skipping

- Performance for different truncation values δ (a)
- Effect of skipping frames to simulate faster camera motion (b)

Credit: Erik Bylow et al.

Weighting Function Comparison

- Exponential weighting function: comparatively more robust
- Narrow Weighting functions: typically less accurate


Dataset	F1 T	eddy [°]	F1 Desk		
	RMSE	Max	RMSE	Max	
Exp. Weight	0.088 m	0.213 m	0.038 m	0.088 m	
Linear Weight	0.083 m	0.285 m	0.038 m	0.089 m	
Constant Weight	0.093 m	0.242 m	0.040 m	0.089 m	
Narrow Exp.	0.170 m	0.414 m	0.038 m	0.083 m	
Narrow Linear	0.382 m	0.688 m	0.044 m	0.085 m	
Narrow Constant	0.379 m	0.694 m	0.044 m	0.209 m	

Credit: Erik Bylow et al.

-

Qualitative Results

Questions / Discussion