

Robust Odometry Estimation for RGB-D Cameras

Kerl, Sturm, Cremers 2013

Florian Becker

Technical University of Munich

Goals and Purpose

Odometry: Tracking the pose of a robot (position and orientation)

Purpose

- Visual odometry important: no external reference system available (e.g GPS)
- Position control of quadrocopters (indoor)

Goal

Develop method that

- estimates motion of a RGB-D camera
- has high frame rates, low latency and is robust to outliers
- uses these estimates for local navigation and position control (of a quadrocopter)

ПΠ

State of the Art

Real-time visual odometry from dense RGB-D images [2]

- Minimize photo consistency error (energy formulation)
- Linearization of objective
- Assumes static scene
- → Real-time at 12.5 Hz (different hardware)

Kinect Fusion [3]

- Uses only depth map values
- Global model of the environment using ICP algorithm
- \rightarrow Only applicable for small indoor rooms (memory issues)
- → GPU for real-time (update surface model + process new input)

ТШП

Contributions

Probabilistic formulation for direct motion estimation (first time)

Robust sensor model from real world data

Integration of temporal prior

Runs in real-time (30 Hz) on a single CPU core (open-source implementation provided)

Demonstrating robustness of approach on several benchmarks

Direct Motion Estimation

Based on photo consistency-assumption:

 $l_1(x) = l_2(\tau(\boldsymbol{\xi}, \boldsymbol{x}))$

 \rightarrow Goal: Find ξ (camera motion) that yields the best photo-consistency for all pixels

[4]

Warping Function 3D-point $p = (x, y, z)^T \xrightarrow{\pi}_{\pi^{-1}}^{\pi}$ Pixel $x = (u, v)^T$

Projection function π

$$\boldsymbol{x} = (u, v)^T = \pi(\boldsymbol{p}) = \left(\frac{f_x x}{z} + c_x, \frac{f_y y}{z} + c_y\right)^T$$
$$\boldsymbol{p} = \pi^{-1}(\boldsymbol{x}, Z_1(\boldsymbol{x})) = Z_1(\boldsymbol{x}) \cdot \left(\frac{u - c_x}{f_x}, \frac{v - c_y}{f_y}, 1\right)^T$$

Point p viewed in second frame (p')

$$p' = Rp + t$$

Twist coordinates $\boldsymbol{\xi} \in \mathbb{R}^6$

 \rightarrow

$$\exp(\hat{\boldsymbol{\xi}}) = \begin{pmatrix} R & \boldsymbol{t} \\ 1 & 0 \end{pmatrix}$$

$$\tau(\xi, x) = \pi(Rp + t)$$
 with $p = \pi^{-1}(x, Z_1(x))$

Florian Becker | Seminar: The Evolution of Motion Estimation and Real-time 3D Reconstruction

TUTI

Likelihood Function

Residual of the i_{th} pixel

Residual image r

 \rightarrow Bayes rule

$$r_i(\boldsymbol{\xi}) = I_2(\tau(\boldsymbol{\xi}, \boldsymbol{x}_i)) - I_1(\boldsymbol{x}_i)$$

$$p(\boldsymbol{r}|\boldsymbol{\xi}) = \prod_{i} p(r_i|\boldsymbol{\xi})$$

$$p(\boldsymbol{\xi}|\boldsymbol{r}) = \frac{p(\boldsymbol{r}|\boldsymbol{\xi})p(\boldsymbol{\xi})}{p(\boldsymbol{r})}$$

Sensor model $p(r|\xi)$ Motion prior $p(\xi)$

(a) reference image I_1

(b) current image I_2

(c) residuals

[4]

Maximum A Posteriori (MAP) Estimation

$$\xi_{MAP} = \arg\min_{\xi} -\log p(\xi|\mathbf{r}) = \arg\min_{\xi} -\sum_{i}\log p(r_i|\xi) - \log p(\xi)$$

Find minimizer (ignore prior for now):

$$\frac{\partial}{\partial \xi} \log p(\xi | \mathbf{r}) = 0 \rightarrow \sum_{i} \frac{\partial r_{i}}{\partial \xi} w(r_{i}) r_{i} = 0 \quad \text{with } w(r_{i}) = \frac{1}{r_{i}} \cdot \frac{\partial}{\partial r_{i}} \log p(r_{i} | \xi)$$

 \rightarrow Minimizer also minimizes the weighted least squares problem

$$\boldsymbol{\xi}_{\boldsymbol{MAP}} = \arg\min_{\boldsymbol{\xi}} \sum_{i} w(r_i) (r_i(\boldsymbol{\xi}))^2$$

Solve minimization problem

 \rightarrow iteratively reweighted least squares algorithm:

Alternate between computation of weights and estimates of ξ until convergence

ПΠ

Linearization

Need to solve:

$$\sum_{i} \frac{\partial r_i}{\partial \xi} w(r_i) r_i = 0 \qquad (I)$$

Problem: r_i non-linear in ξ \rightarrow Linearize ξ :

$$r_{lin}(\xi, \mathbf{x}_i) = r(\mathbf{0}, \mathbf{x}_i) + \frac{\partial r(\tau(\xi, \mathbf{x}_i))}{\partial \xi} \bigg|_{\xi = \mathbf{0}} \Delta \xi$$
$$= r(\mathbf{0}, \mathbf{x}_i) + J_i \Delta \xi$$

 \rightarrow Into (*I*)

$$J^T W J \Delta \boldsymbol{\xi} = -J^T W \boldsymbol{r}(\boldsymbol{0})$$

Update parameters:

$$\boldsymbol{\xi}^{(k+1)} = \log\left(\exp\left(\boldsymbol{\xi}^{(k)}\right)\exp\left(\Delta\boldsymbol{\xi}^{(k)}\right)\right)$$

ПΠ

5

[4]

Robust Estimation -- normal distribution normal distribution ---robust normal dist. Tukey weights -t-distribution t-distribution 20 0.06 weighted error w(r)r² 5 0 51 Sensor model $p(r|\xi)$ \rightarrow t-distribution fits the assumptions better 0 -1000 residual r 100 0 residual r -5

(b) residuals

(c) weights

Florian Becker | Seminar: The Evolution of Motion Estimation and Real-time 3D Reconstruction

(a) scene

Robust Estimation

Motion prior $p(\xi)$

Temporal prior based on constant velocity model with a normal distribution: $p(\xi_t) = \mathcal{N}(\xi_{t-1}, \Sigma)$

 \rightarrow Normal equation:

Florian Becker | Seminar: The Evolution of Motion Estimation and Real-time 3D Reconstruction

Evaluation

Synthetic Sequences

- Generated perfect ground truth (two types)
 - Static scene
 - Small dynamic object
- Focus on real-time parameters

Conclusion

- → Robust weighting important for noise and outliers
- → t-distribution better suited than gaussian distribution (no weights)

static

Method	Parameter set	RMSE [m/s]	Improvement	ØRuntime [s]
reference		0.0751	0.0 %	0.038
no weights	realtime	0.0223	70.0 %	0.032
Tukey weights	realtime	0.0497	33.8 %	0.050
t-dist. weights	realtime	0.0142	81.1 %	0.043

dynamic

Method	Parameter set	RMSE [m/s]	Improvement	ØRuntime [s]
reference		0.1019	0.0 %	0.035
no weights	realtime	0.0650	36.2 %	0.030
Tukey weights	realtime	0.0382	62.5 %	0.056
t-dist. weights	realtime	0.0296	71.0 %	0.047

Evaluation

TUM RGB-D Benchmark Sequences

- Real world data tracked by highly accurate motion capture system
- Focus on real-time parameters

Conclusion

Temporal prior: Particularly useful when many outliers are present or high velocity of camera

sta	tic		VS.	dy	/namic	
Method	ØDrift [m/s]	Improvement		Method	ØDrift [m/s]	Improvement
reference	0.2425	0.0 %		reference	0.0800	0.0 %
no weights	0.0588	75.74 %		no weights	0.0350	56.23 %
Tukey weights	0.1491	38.50 %		Tukey weights	0.1038	-29.66 %
t-dist. weights	0.0432	82.18 %		t-dist. weights	0.0470	41.33 %
t-dist. weights + temporal	0.0428	82.35 %		t-dist. weights + tem	poral 0.0316	60.55 %

Summary

Probabilistic formulation

- Directly estimate the camera motion from RGB-D images
- Use of custom probability distributions for the sensor and motion model possible

Increase robustness

- t-distribution (address outliers)
- Temporal prior (guides optimization)

Fast

Runs in real-time (30 Hz) on a single CPU core

Discussion

References

- [1] https://www.rcmoment.com/p-rm11238w.html
- [2] F. Steinbrücker, J. Sturm, and D. Cremers, "Real-time visual odometry from dense RGB-D images," in Workshop on Live Dense Reconstruction with Moving Cameras at the Intl. Conf. on Computer Vision (ICCV), 2011
- [3] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
 A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon,
 "KinectFusion: Real-time dense surface mapping and tracking," in
 IEEE Intl. Symposium on Mixed and Augmented Reality (ISMAR), 2011
- [4] and where no different source is explicitly stated:
 C. Kerl, J. Sturm, and D. Cremers, "Robust odometry estimation for RGB-D cameras," in IEEE Intl. Conf. on Robotics and Automation (ICRA), 2013.

ТЛП

t-distribution

$$p(r) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{r^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

$$w(r) = \frac{1}{r} \cdot \frac{\partial}{\partial r} \log p(r)$$
$$= \frac{\nu + 1}{\nu + \left(\frac{r}{\sigma}\right)^2}$$

With

 \rightarrow

$$\sigma^{2} = \frac{1}{n} \sum_{i} r_{i}^{2} \frac{\nu + 1}{\nu + \left(\frac{r}{\sigma}\right)^{2}}$$

(has to be solved iteratively, but converges fast) Experiments: v = 5 good

ТUП

Twist coordinates

$$\boldsymbol{\xi} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix}$$
$$exp(\boldsymbol{\hat{\xi}}) = exp \begin{pmatrix} 0 & -\omega_3 & \omega_2 & v_1 \\ \omega_3 & 0 & -\omega_1 & v_2 \\ -\omega_2 & \omega_1 & 0 & v_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$exp(\boldsymbol{\hat{\xi}}) = \begin{pmatrix} R & \boldsymbol{t} \\ 1 & 0 \end{pmatrix}$$

Florian Becker | Seminar: The Evolution of Motion Estimation and Real-time 3D Reconstruction

Video

https://www.youtube.com/watch?v=TMqPwoCCmto

Synthetic Sequences

static

Method	Parameter set	RMSE [m/s]	Improvement	ØRuntime [s]
reference		0.0751	0.0 %	0.038
no weights	realtime	0.0223	70.0 %	0.032
Tukey weights	realtime	0.0497	33.8 %	0.050
t-dist. weights	realtime	0.0142	81.1 %	0.043
no weights	precision	0.0145	80.7 %	0.115
Tukey weights	precision	0.0279	62.8 %	0.230
t-dist. weights	precision	0.0124	83.5 %	0.405

dynamic

Method	Parameter set	RMSE [m/s]	Improvement	ØRuntime [s]
reference		0.1019	0.0 %	0.035
no weights	realtime	0.0650	36.2 %	0.030
Tukey weights	realtime	0.0382	62.5 %	0.056
t-dist. weights	realtime	0.0296	71.0 %	0.047
no weights	precision	0.0502	50.7 %	0.130
Tukey weights	precision	0.0270	73.5 %	0.279
t-dist. weights	precision	0.0133	87.0 %	0.508

Real-time visual odometry from dense RGB-D images

Energy formulation

 $E(\boldsymbol{\xi}) = \int I_2(\tau(\boldsymbol{\xi}, \boldsymbol{x})) - I_1(\boldsymbol{x})$

→ Linearize $I_2(\tau(\xi, x))$ and $\tau(\xi, x)$ around $\xi = 0$ Rigid body motion g

$$E(\boldsymbol{\xi}) \sim \int \left(I_2(\boldsymbol{x}) - I_1(\boldsymbol{x}) + \nabla I_2^T \left(\frac{d\pi}{dg} \right) \left(\frac{dg}{d\boldsymbol{\xi}} \right) \boldsymbol{\xi} \right)^2$$

 \rightarrow Normal equations