

Seminar: The Evolution of Motion Estimation and Real-time 3D Reconstruction

David Schubert, Christiane Sommer, Björn Häfner Computer Vision Group Technical University of Munich

Tur Uhrenturm

How can I access these slides?

- Option 1 (preferred): seminar web page
 - https://vision.in.tum.de/teaching/ss2020/seminar_realtime3d
 - Password for material page: ss20-realtime3d
 - Material page will go online after this pre-meeting
- Option 2: contact organizers
 - realtime3d-ss20@vision.in.tum.de
 - Only use this option if you forgot the password

Outline

- General Information
 - About the Seminar
 - Registration
- $\circ~$ Possible Papers
 - Depth Sensors
 - Monocular Cameras
 - Shading-based Approaches
- Questions

Outline

- General Information
 - About the Seminar
 - Registration
- $\circ~$ Possible Papers
 - Depth Sensors
 - Monocular Cameras
 - Shading-based Approaches
- Questions

How is the seminar organized?

- · Seminar meetings: talks and discussion
 - Days: Wednesday, April 15th and Thursday, April 16th
 - Time: 9:00 17:00
 - Room: MI 02.09.023
 - 6-7 talks per day
 - Attendance is mandatory!
- Talk preparation / contact with supervisor
 - Read through your paper and write down what you don't understand
 - Approx. **one month before** talk (optional, but recommended): meet supervisor for questions
 - **One week before** talk (optional, but recommended): meet supervisor to go through slides
 - April 9th (mandatory): send slides to your supervisor
 - May 3rd (mandatory): submit your report via email

What about the presentation?

- General set-up:
 - Duration: 20-25 minutes talk + 10-15 minutes discussion
 - Make sure to finish on time not too early and not too late!
 - $-\,$ Rule of thumb: 1-2 minutes per slide \rightarrow 10-20 slides
 - Do not put too much information on the slides!
- Recommended structure (talk):
 - Introduction
 - Overview / Outline
 - Method description
 - Experiments and results
 - Personal comments
 - Summary

What about the discussion after each talk?

- Discussion afterwards will influence your grade
- Ask questions!
- There are **no** stupid questions!

What about the final report?

- General set-up:
 - Use LATEX template provided on web page
 - Length: 3-4 pages
 - Send final report as pdf by email to realtime3d-ss20@vision.in.tum.de
 - Submission deadline: May 3rd, 2020
- Recommended structure (main text only):
 - Introduction
 - Method description
 - Experiments and results
 - Discussion of results
 - Summary

Outline

- General Information
 - $\circ~$ About the Seminar
 - Registration
- $\circ~$ Possible Papers
 - Depth Sensors
 - Monocular Cameras
 - Shading-based Approaches
- Questions

How do you register for the seminar?

- Step 1: Official registration via TUM matching system
 - Go to matching.in.tum.de
 - Register for seminar with the title The Evolution of Motion Estimation and Real-time 3D Reconstruction
- Step 2: Personal registration via email
 - In the list of papers on the web page, select your three favorites
 - Write an email ranking these three favorites to the seminar email address
 - Email subject: "Real-time 3D application [your name]"
 - Include information about related lectures / courses you have taken so far.
 - We do **not** need your CV or a motivation letter!
 - Registrations without email / emails with missing information will be ignored!
- Deadline for both registrations: February 12th, 2020

How do you register for the seminar?

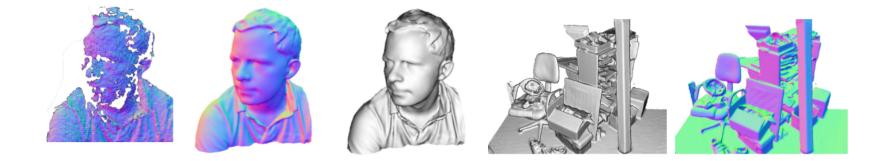
Example registration email:

1		
	To:	realtime3d-ss20@vision.in.tum.de
	<u>S</u> ubject:	[Real-time 3D] application [Anna Smith]
	Body Text 🗸 Va	riable Width 🗸 🗖 🗚
	Hi,	
	I would like to present one of the following papers: 1. Paper A 2. Paper B 3. Paper C	
	In the past, I have taken these related courses: - Lecture Multiple View Geometry (Summer 19) - Practical Course Visual Navigation (Winter 19)	
	Best, Anna	

ПП

How do we select candidates and assign papers?

- Candidate selection
 - Only students registered in the matching system AND
 - emails containing all required information will be considered
 - Among students meeting the formal criteria, selection will be random
 - You will get notified by the matching system about the decision (February 20th, 2019)
- Paper assignment
 - Papers are assigned after the participant list is finalized
 - We give our best to accommodate your preference list in the assignment


Outline

- General Information
 - $\circ~$ About the Seminar
 - Registration
- \circ Possible Papers
 - Depth Sensors
 - Monocular Cameras
 - Shading-based Approaches
- Questions

KinectFusion: Real-Time Dense Surface Mapping and Tracking

Newcombe, Izadi, Hilliges, Molyneaux, Kim, Davison, Kohli, Shotton, Hodges, Fitzgibbon 2011

- First paper to generate dense 3D models in real-time using depth sensor and GPU
- Highly cited, impactful, baseline method for 3D reconstruction using RGB-D cameras

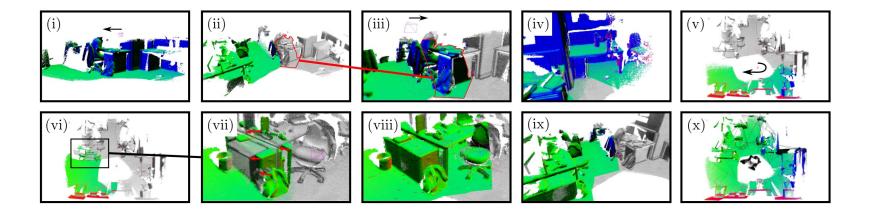
Real-Time Camera Tracking and 3D Reconstruction Using Signed Distance Functions

Bylow et al. 2013, RSS

• Nice introduction to SDFs using RGB-D cameras

Robust Odometry Estimation for RGB-D Cameras

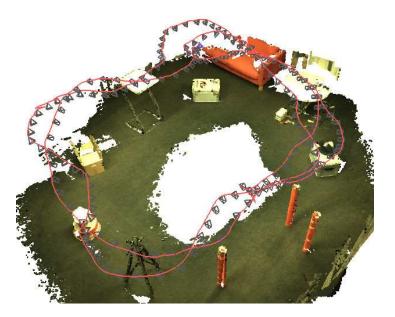
Kerl, Sturm, Cremers 2013



- Odometry method that minimizes photometric cost using depth measurements
- Improved weighting function for robustness in the presence of outliers

ElasticFusion: Dense SLAM Without A Pose Graph

Whelan, Leutenegger, Salas-Moreno, Glocker, Davison 2015

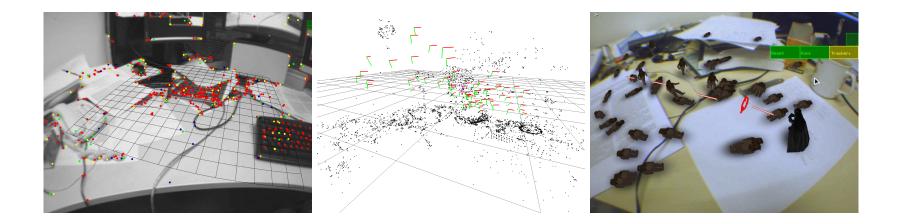


- Uses surfels instead of a TSDF to represent the 3D model
- First method to update the surface in online manner

BAD SLAM: Bundle Adjusted Direct RGB-D SLAM

Schöps, Sattler, Pollefeys 2019

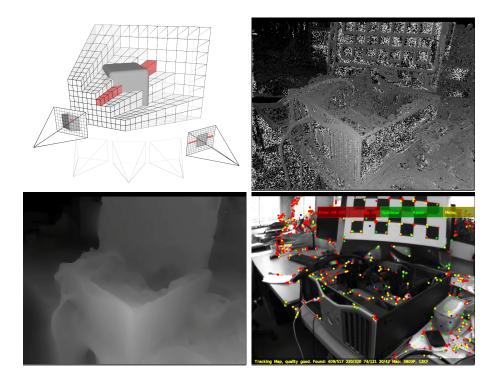
- Published on CVPR 2019
- Perform bundle adjustment on surfels to get a high quality pose


Outline

- General Information
 - $\circ~$ About the Seminar
 - Registration
- Possible Papers
 - Depth Sensors
 - Monocular Cameras
 - Shading-based Approaches
- Questions

PTAM: Parallel Tracking and Mapping

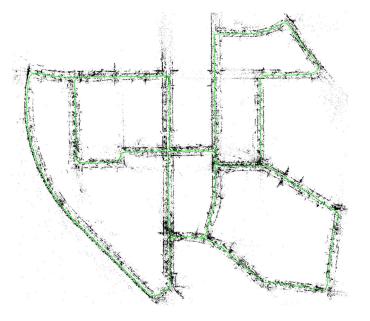
Klein, Murray 2007



- One of the first systems capable of estimating both pose and geometry in real-time for handheld cameras
- Simple AR applications

DTAM: Dense Tracking and Mapping in Real-Time

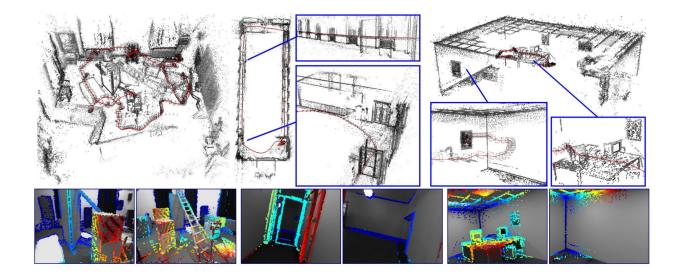
Newcombe, Lovegrove, Davison 2011



• One of the first monocular systems to create dense 3D models

ORB-SLAM: a Versatile and Accurate Monocular SLAM System

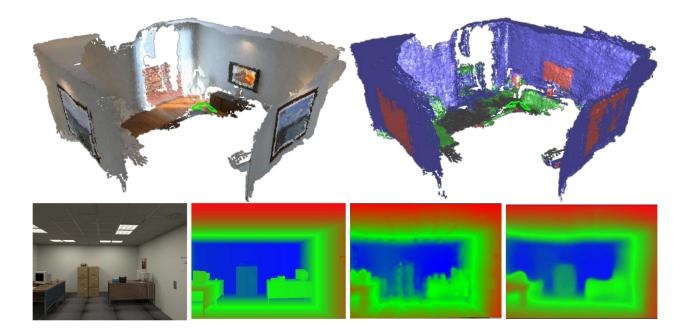
Mur-Artal, Montiel, Tardós 2015



• Use all depth and color data to obtain consistent mapping

Direct Sparse Odometry

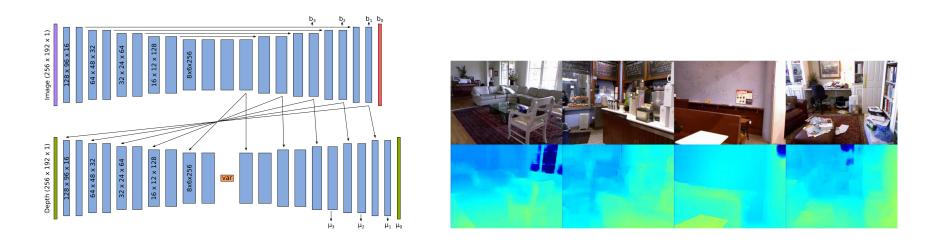
Engel, Koltun, Cremers 2016



- Large-scale odometry
- Does not rely on keypoint detections

CNN-SLAM

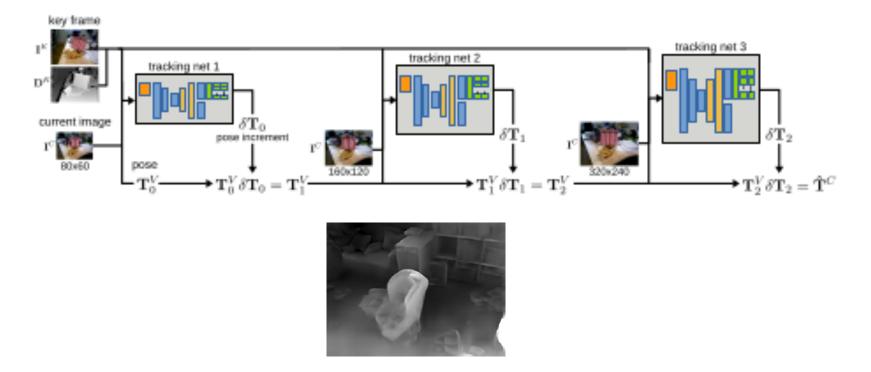
Tateno et al. 2017



- Dense monocular SLAM
- Use depth map predicted from CNN

CodeSLAM

Michael Bloesch et al. 2018



• Learning a compact, optimisable representation of the scene geometry

DeepTAM: Deep Tracking and Mapping

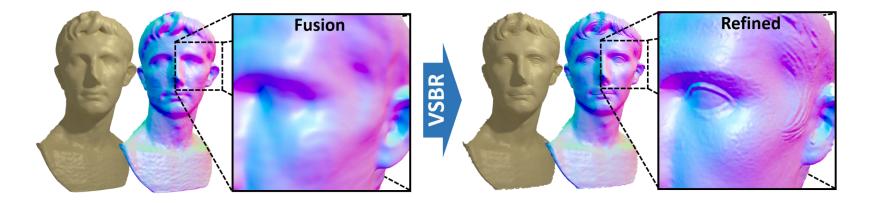
Zhou, Ummenhofer, Brox 2018

• Learn a network to predict the pose and generate depth images

Deep Virtual Stereo Odometry

Yang et al. 2018

- Use virtual stereo constraints
- Obtain stereo performance on monocular data


Outline

- General Information
 - $\circ~$ About the Seminar
 - Registration
- Possible Papers
 - Depth Sensors
 - Monocular Cameras
 - Shading-based Approaches
- Questions

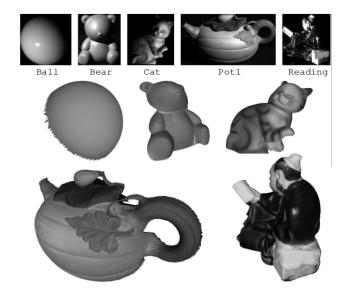
Shading-based Refinement on Volumetric Signed Distance Functions

Zollhöfer, Dai, Innmann, Wu, Stamminger, Theobalt, Nießner 2015

- Optimize geometry using shading (color) information
- Use signed distance functions to represent geometry

RGBD-Fusion: Real-Time High Precision Depth Recovery

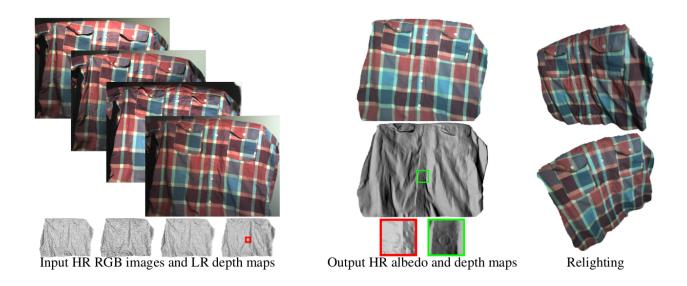
Or-El, Rosman, Wetzler, Kimmel, Bruckstein 2015



- From a single RGB-D shot improve the underlying depth map
- Use shape-from-shading and smart optimization

A Non-Convex Variational Approach to Photometric Stereo under Inaccurate Lighting

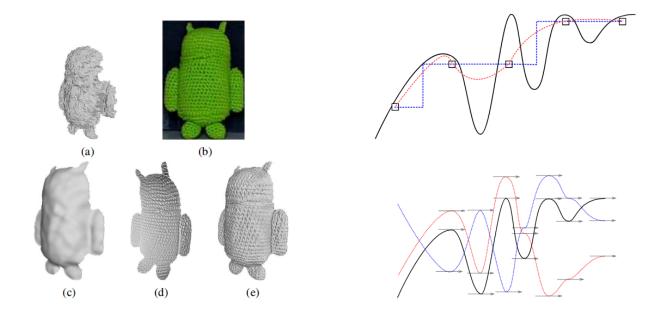
Quéau et al. 2017, CVPR


• From multiple (differently illuminated) RGB images estimate depth, true color and lighting

· Make use of Photometric Stereo

Depth Super-Resolution Meets Uncalibrated Photometric Stereo

Peng et al. 2017, ICCVW


• From multiple (differently illuminated) RGB-D images estimate depth, true color and lighting

· Make use of Photometric Stereo

ПΠ

Fight ill-posedness with ill-posedness: Single-shot variational depth super-resolution from shading

Haefner, Quéau, Möllenhoff, Cremers 2018

- Generate super-resolved depth image using shading clues
- Overcome shading ambiguity using depth clues

Practical SVBRDF Acquisition of 3D Objects with Unstructured Flash Photography

NAM et al. 2018, TOG

• Reconstruction of non-lambertian objects using mobile devices

A Differential Volumetric Approach to Multi-View Photometric Stereo

Logothetis et al. 2019, ICCV

- Optimize geometry using shading information in a photometric stereo manner
- Use signed distance functions to represent geometry

Questions?

Reminder:

- Web page: vision.in.tum.de/teaching/ss2020/seminar_realtime3d
- Password: ss20-realtime3d
- Contact: realtime3d-ss20@vision.in.tum.de