
Practical Course: Vision Based Navigation

Lecture 1: Introduction,
3D Geometry and Lie Groups

Dr. Vladyslav Usenko, Nikolaus Demmel, David Schubert
Prof. Dr. Daniel Cremers

Version: 25.04.2020

Introduction

2

Applications of Navigation Algorithms

3

Sensors for Navigation

• Sensor provide the way to measure the state of the environment
• Interoseptive sensors: accelerometer, gyroscope …
• Exteroceptive sensors: camera, laser rangefinder, GPS …

4

Benefits of Cameras

5

• Cheap
• Low power
• Lightweight
• Widely commercially available
• Passive (no interference)

• Very similar to human sensors

Vestibulo–ocular reflex Source: Wikipedia

Types of cameras

• Cameras
•Monocular
•Stereo
•RGB-D
•Event camera,
•…

6

Monocular	camera

RGB-D	(depth)	camera

Stereo	camera

Ambiguity	in	mono	vision:	small	+	close	or	large	+	far	away?

Stereo Cameras

7

Stereo vision estimates the depth from disparity

Moving	stereo:	disparity	can	be	estimated	in	the	motion

Content of the Practical Course

You will implement three main components distributed in 5 exercises:
• Camera Calibration
• Structure from Motion (SfM)
• Visual Odometry (VO)

Implementation is done using:
• C++
• Eigen for linear algebra
• Sophus for Lie groups
• OpenGV for multiple view geometry algorithms
• Ceres for optimisation
• Pangolin for visualisation
• Git
• Supported OS: Ubuntu 18.04, Mac OS >= 10.14

The code is optimised for easy understanding and prototyping. We rely on Ceres auto-differentiation
to compute Jacobians (slower than analytical Jacobians, but much lower development efforts).

8

Camera Calibration

9

Before Optimization:

After Optimization:

Structure from Motion (SFM)

10

Photo Tourism: Exploring Photo Collections in 3D
Noah Snavely

University of Washington
Steven M. Seitz

University of Washington
Richard Szeliski
Microsoft Research

(a) (b) (c)

Figure 1: Our system takes unstructured collections of photographs such as those from online image searches (a) and reconstructs 3D points
and viewpoints (b) to enable novel ways of browsing the photos (c).

Abstract
We present a system for interactively browsing and exploring large
unstructured collections of photographs of a scene using a novel
3D interface. Our system consists of an image-based modeling
front end that automatically computes the viewpoint of each photo-
graph as well as a sparse 3D model of the scene and image to model
correspondences. Our photo explorer uses image-based rendering
techniques to smoothly transition between photographs, while also
enabling full 3D navigation and exploration of the set of images and
world geometry, along with auxiliary information such as overhead
maps. Our system also makes it easy to construct photo tours of
scenic or historic locations, and to annotate image details, which
are automatically transferred to other relevant images. We demon-
strate our system on several large personal photo collections as well
as images gathered from Internet photo sharing sites.
CR Categories: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities I.2.10 [Artificial Intelligence]: Vision and Scene
Understanding—Modeling and recovery of physical attributes
Keywords: image-based rendering, image-based modeling, photo
browsing, structure from motion

1 Introduction
A central goal of image-based rendering is to evoke a visceral sense
of presence based on a collection of photographs of a scene. The
last several years have seen significant progress towards this goal
through view synthesis methods in the research community and in
commercial products such as panorama tools. One of the dreams

is that these approaches will one day allow virtual tourism of the
world’s interesting and important sites.
During this same time, digital photography, together with the In-

ternet, have combined to enable sharing of photographs on a truly
massive scale. For example, a Google image search on “Notre
Dame Cathedral” returns over 15,000 photos, capturing the scene
from myriad viewpoints, levels of detail, lighting conditions, sea-
sons, decades, and so forth. Unfortunately, the proliferation of
shared photographs has outpaced the technology for browsing such
collections, as tools like Google (www.google.com) and Flickr
(www.flickr.com) return pages and pages of thumbnails that the
user must comb through.
In this paper, we present a system for browsing and organizing

large photo collections of popular sites which exploits the common
3D geometry of the underlying scene. Our approach is based on
computing, from the images themselves, the photographers’ loca-
tions and orientations, along with a sparse 3D geometric represen-
tation of the scene, using a state-of-the-art image-based modeling
system. Our system handles large collections of unorganized pho-
tographs taken by different cameras in widely different conditions.
We show how the inferred camera and scene information enables
the following capabilities:

• Scene visualization. Fly around popular world sites in 3D by
morphing between photos.

• Object-based photo browsing. Show me more images that
contain this object or part of the scene.

• Where was I? Tell me where I was when I took this picture.
• What am I looking at? Tell me about objects visible in this
image by transferring annotations from similar images.

Our paper presents new image-based modeling, image-based
rendering, and user-interface techniques for accomplishing these
goals, and their composition into an end-to-end 3D photo brows-
ing system. The resulting system is remarkably robust in practice;
we include results on numerous sites, ranging from Notre Dame
(Figure 1) to the Great Wall of China and Yosemite National Park,
as evidence of its broad applicability.
The remainder of this paper is structured as follows. Section 2

gives an overview of the approach. Section 3 surveys related work

Photo Tourism: Exploring Photo Collections in 3D
Noah Snavely

University of Washington
Steven M. Seitz

University of Washington
Richard Szeliski
Microsoft Research

(a) (b) (c)

Figure 1: Our system takes unstructured collections of photographs such as those from online image searches (a) and reconstructs 3D points
and viewpoints (b) to enable novel ways of browsing the photos (c).

Abstract
We present a system for interactively browsing and exploring large
unstructured collections of photographs of a scene using a novel
3D interface. Our system consists of an image-based modeling
front end that automatically computes the viewpoint of each photo-
graph as well as a sparse 3D model of the scene and image to model
correspondences. Our photo explorer uses image-based rendering
techniques to smoothly transition between photographs, while also
enabling full 3D navigation and exploration of the set of images and
world geometry, along with auxiliary information such as overhead
maps. Our system also makes it easy to construct photo tours of
scenic or historic locations, and to annotate image details, which
are automatically transferred to other relevant images. We demon-
strate our system on several large personal photo collections as well
as images gathered from Internet photo sharing sites.
CR Categories: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities I.2.10 [Artificial Intelligence]: Vision and Scene
Understanding—Modeling and recovery of physical attributes
Keywords: image-based rendering, image-based modeling, photo
browsing, structure from motion

1 Introduction
A central goal of image-based rendering is to evoke a visceral sense
of presence based on a collection of photographs of a scene. The
last several years have seen significant progress towards this goal
through view synthesis methods in the research community and in
commercial products such as panorama tools. One of the dreams

is that these approaches will one day allow virtual tourism of the
world’s interesting and important sites.
During this same time, digital photography, together with the In-

ternet, have combined to enable sharing of photographs on a truly
massive scale. For example, a Google image search on “Notre
Dame Cathedral” returns over 15,000 photos, capturing the scene
from myriad viewpoints, levels of detail, lighting conditions, sea-
sons, decades, and so forth. Unfortunately, the proliferation of
shared photographs has outpaced the technology for browsing such
collections, as tools like Google (www.google.com) and Flickr
(www.flickr.com) return pages and pages of thumbnails that the
user must comb through.
In this paper, we present a system for browsing and organizing

large photo collections of popular sites which exploits the common
3D geometry of the underlying scene. Our approach is based on
computing, from the images themselves, the photographers’ loca-
tions and orientations, along with a sparse 3D geometric represen-
tation of the scene, using a state-of-the-art image-based modeling
system. Our system handles large collections of unorganized pho-
tographs taken by different cameras in widely different conditions.
We show how the inferred camera and scene information enables
the following capabilities:

• Scene visualization. Fly around popular world sites in 3D by
morphing between photos.

• Object-based photo browsing. Show me more images that
contain this object or part of the scene.

• Where was I? Tell me where I was when I took this picture.
• What am I looking at? Tell me about objects visible in this
image by transferring annotations from similar images.

Our paper presents new image-based modeling, image-based
rendering, and user-interface techniques for accomplishing these
goals, and their composition into an end-to-end 3D photo brows-
ing system. The resulting system is remarkably robust in practice;
we include results on numerous sites, ranging from Notre Dame
(Figure 1) to the Great Wall of China and Yosemite National Park,
as evidence of its broad applicability.
The remainder of this paper is structured as follows. Section 2

gives an overview of the approach. Section 3 surveys related work

Snavely N, Seitz SM, Szeliski R. Photo tourism: exploring photo collections in 3D. InACM Siggraph 2006 Papers 2006 Jul 1 (pp. 835-846).

Agarwal S, Snavely N, Seitz SM, Szeliski R. Bundle adjustment in the large. In European conference on computer vision 2010 Sep 5 (pp. 29-42). Springer, Berlin, Heidelberg.

What You Will Implement (SFM)

11

Visual Odometry / SLAM

12

What You Will Implement (VO)

13

Recommended Literature

14

Hartley and
Zisserman,
Multiple view
geometry in
computer vision

Timothy Barfoot,
State estimation
for robotics
(Link)

http://asrl.utias.utoronto.ca/~tdb/bib/barfoot_ser17.pdf

Multiple View Geometry

15

https://www.youtube.com/watch?v=RDkwklFGMfo&list=PLTBdjV_4f-EJn6udZ34tht9EVIW7lbeo4

Multiple View Geometry Lecture
Prof. Dr. Daniel Cremers

TU München

Due to the issues with camera exposure we encourage you to download and follow the PDF version of the slides
(link in the description of the corresponding lecture)

https://www.youtube.com/watch?v=RDkwklFGMfo&list=PLTBdjV_4f-EJn6udZ34tht9EVIW7lbeo4

3D Geometry and Lie Groups

16

Vector Space

A set V is called a linear or vector space over the field if it is closed under vector summation

and under scalar multiplication

i.e. . With respect to addition (+) it forms a commutative
group (neutral element 0 , inverse element). Scalar multiplication respects the structure of

. Multiplication and addition respect the distributive law:
 and

Example: .

A subset of a vector space is called subspace if and is closed under and
(for all).

In this course we use Eigen Library to represents vectors and matrices. Please have a look at the
Eigen Quick Reference Guide.

ℝ
+ : V × V → V

· : ℝ × V → V
αv1 + βv2 ∈ V, ∀v1, v2 ∈ V, ∀α, β ∈ ℝ

−v
ℝ : α(βv) = (αβ)v

(α + β)v = αv + βv α(v + u) = αv + αu
V = ℝn, v = (x1, . . . xn)T

W ∈ V V 0 ∈ W W + ·
α ∈ ℝ

17

https://eigen.tuxfamily.org/dox/group__QuickRefPage.html

Linear Independence and Basis

The spanned subset of a set of vectors is the
subspace formed by all linear combinations of these vectors:

The set S is called linearly independent if:

in other words: if none of the vectors can be expressed as a linear
combination of the remaining vectors. Otherwise the set is called
linearly dependent.

A set of vectors is called a basis of V if it is linearly
independent and if it spans the vector space . A basis is a maximal set
of linearly independent vectors.

S = {v1, . . . vk} ∈ V

span(S) = {v ∈ V |v =
k

∑
i=1

αivi}

k

∑
i=1

αivi = 0 ⟹ αi = 0∀i

B = {v1, . . . vn}
V

18

Right	handed

Left	handed

Inner Product
On , once can define the canonical inner product for the canonical basis as

which induces the standard norm or Euclidean norm

Two vectors and are orthogonal iff .

V = ℝn B = In

⟨x, y⟩ = xTy =
n

∑
i=1

xiyi

L2

|x |2 = xT x = x2
1 + . . . + x2

n

v w ⟨v, w⟩ = 0

19

#include <iostream>
#include <Eigen/Dense>

using namespace Eigen;
using namespace std;
int main()
{
 Vector3d v(1,2,3);
 Vector3d w(0,1,2);

 cout << "Dot product: " << v.dot(w) << endl;
 }

https://eigen.tuxfamily.org/dox/namespaceEigen.html
https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html

Three-dimensional Euclidean Space

The three-dimensional Euclidean space consists of all points characterised by
coordinates

,
such that can be identified with . That means we talk about points () and coordinates
() as if they were the same thing. Given two points and , one can define a bound vector
as

.
Considering this vector independent of its base point makes it a free vector. The set of free
vectors forms a linear vector space. By defining and , one can endow with a
scalar product, a norm and a metric.

𝔼3 p ∈ 𝔼3

X = (X1, X2, X3) ∈ ℝ3

𝔼3 ℝ3 𝔼3

ℝ3 X Y

v = X − Y ∈ ℝ3

Y
v ∈ ℝ3 𝔼3 ℝ3 𝔼3

20

Cross Product & Skew-Symmetric Matrices
On one can define a cross product

,

which is a vector orthogonal to and . Since , the cross product introduces and
orientation. Fixing induces a linear mapping which can be represented by the skew-
symmetric matrix such that :

.

In turn, every skew symmetric matrix can be identified with a vector .

ℝ3

× : ℝ3 × ℝ3 → ℝ3 : u × v =
u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

∈ ℝ3

u v u × v = − v × u
u v → u × v

̂uv = u × v

̂u =
0 −u3 u2

u3 0 −u1

−u2 u1 0
∈ ℝ3×3

M = − MT ∈ ℝ3 u ∈ ℝ3

21

#include <iostream>
#include <Eigen/Dense>

using namespace Eigen;
using namespace std;
int main()
{
 Vector3d v(1,2,3);
 Vector3d w(0,1,2);

 cout << "Cross product:\n" << v.cross(w) << endl;
}

https://eigen.tuxfamily.org/dox/namespaceEigen.html
https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html

Linear Transformation and Matrices
Linear algebra studies the properties of linear transformations between linear spaces. Since these
can be represented bu matrices, linear algebra studies the properties of matrices. A linear
transformation L between two linear spaces and is a map such that:

,
.

Due to the linearity the action of on the space is uniquely defined by its actions on the basis
vectors of . In the canonical basis we have:

,
where

.
The set of all real matrices is denoted by . In the case of , the set

 forms a ring over the field , i.e. it is closed under matrix multiplication and
summation.

V W L : V → W
L(x + y) = L(x) + L(y) ∀x, y ∈ V

L(αx) = αL(x) ∀x ∈ V, α ∈ ℝ
L V

V {e1, . . . en}
L(x) = Ax ∀x ∈ V

A = (L(e1), . . L(en)) ∈ ℝm×n

m × n ℳ(m, n) m = n
ℳ(m, n) = ℳ(m) ℝ

22

The Linear Groups and GL(n) SL(n)

There exist certain sets of linear transformations which form a group.
A group is a set with an operation such that:

1. closed: ,
2. assoc.: ,
3. neutral: ,
4. inverse: .

Example: All invertible (non-singular) real matrices form a group with respect to matrix
multiplication. This group is called the general linear group . It consists of all
for which

All matrices for which for a group called special linear group SL(n). The
inverse of is also in this group as

G ∘ : G × G → G
g1 ∘ g2 ∈ G ∀g1, g2 ∈ G
(g1 ∘ g2) ∘ g3 = g1 ∘ (g2 ∘ g3) ∀g1, g2, g3 ∈ G
∃e ∈ G : e ∘ g = g ∘ e = g ∀g ∈ G
∃g−1 ∈ G : g ∘ g−1 = g−1 ∘ g = e ∀g ∈ G

n × n
GL(n) A ∈ ℳ(n)

det(A) ≠ 0
A ∈ GL(n) det(A) = 1

A det(A−1) = det(A)−1

23

Matrix Representation of Groups

A group G has a matrix representation if there exists and injective transformation:
,

which preserves the group structure of , that is inverse and composition are preserved by the map:
.

Such a map R is called a group homomorphism.

The idea of matrix representations of a group is that they allow to analyse more abstract groups by
looking at the properties of the respective matrix group. Example: The rotations of an object form a
group as there exists a neutral element (no rotation) and an inverse (the inverse rotation) and any
concatenation of rotations is again a rotation (around a different axis). Studying the properties of the
rotation group is easier if rotations are represented by respective matrices.

R : G → GL(n)
G

R(e) = In×n, R(g ∘ h) = R(g)R(h) ∀g, h ∈ G

24

#include <iostream>
#include <Eigen/Dense>

using namespace Eigen;
int main()
{
 Matrix2d mat;
 mat << 1, 2,
 3, 4;
 Vector2d u(-1,1), v(2,0);
 std::cout << "Here is mat*mat:\n" << mat*mat << std::endl;
 std::cout << "Here is mat*u:\n" << mat*u << std::endl;
 std::cout << "Here is u^T*mat:\n" << u.transpose()*mat << std::endl;
 std::cout << "Here is u^T*v:\n" << u.transpose()*v << std::endl;
 std::cout << "Here is u*v^T:\n" << u*v.transpose() << std::endl;
 std::cout << "Let's multiply mat by itself" << std::endl;
 mat = mat*mat;
 std::cout << "Now mat is mat:\n" << mat << std::endl;
}

https://eigen.tuxfamily.org/dox/namespaceEigen.html
https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
https://eigen.tuxfamily.org/dox/classEigen_1_1DenseBase.html#ac8952c19644a4ac7e41bea45c19b909c
https://eigen.tuxfamily.org/dox/classEigen_1_1DenseBase.html#ac8952c19644a4ac7e41bea45c19b909c

Representations of Rotation

25

• Rotation representations
• SO(3) matrices
• Rotation vectors (angle-axis)
• Euler angles
• Quaternions

For more rotation representations and conversions see:
https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions

https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions

Euler Angles

26

Original First Second Third

Any rotation can be decomposed into three principal rotations

normal singular

• Gimbal lock
• Singularity always exist if we want to use 3

parameters to describe rotation
• Degree-of-Freedom is reduced in singular

case
• In yaw-pitch-roll order, when pitch=90

degrees

• Reasons not to use:
• Hard to combine rotations
• 12 different conventions exist (however yaw-pitch-roll is the most used one)
• Singularities are bad for optimisation.

Representations of Rotation

27

• (Unit) Quaternions
• Extended from complex numbers
• Three imaginary and one real part:
• The imaginary parts satisfy:

• Reasons to use
• Require less memory than rotation matrices
• Easy to keep normalized
• Smaller number of operations (but not

always faster on modern CPUs)

Operations:

Reasons to use Matrix Groups

28

• Unified representation of many transformations
• rotation SO(3)
• rigid body transformations SE(3)
• scaling Sim(3)
• and others

• Easy concatenation of transformations with matrix multiplication
• No singularities
• Overparametrized, but for optimisation minimal representation of updates can

be used.

The Orthogonal Group O(n)

A matrix is called orthogonal if it preserves the inner product, i.e:
.

The set of all orthogonal matrices forms the orthogonal group , which is a subgroup of
. For an orthonormal matrix R we have

.
Therefore we must have , in other words:

,
The above identity shows that for any orthogonal matrix R we have

, which means .

The subgroup of with is called the special orthogonal group . In
particular is the group of all 3-dimensional rotation matrices.

A ∈ ℳ(n)
⟨Ax, Ay⟩ = ⟨x, y⟩, ∀x, y, ∈ ℝn

O(n)
GL(n)

⟨Rx, Ry⟩ = xTRTRy = xTy ∀x, y, ∈ ℝn

RTR = RRT = I
O(n) = {R ∈ GL(n) | RTR = I}

det(RTR) = (det(R))2 = det(I) = 1 det(R) ∈ {±1}

O(n) det(R) = 1 SO(n)
SO(3)

29

The Affine Group A(n)

An affine transformation is defined by a matrix and a vector
such that:

.
The set of all such affine transformations is called the affine group of dimensions n, denoted by

. defined above is not a linear map unless . By introducing homogenous coordinates
to represent , becomes a lunar mapping from

; .

A matrix with is called an affine matrix. It is an element of

. The affine matrices for a subgroup in .

L : ℝn → ℝn A ∈ GL(n) b ∈ ℝn

L(x) = Ax + b

A(n) L b = 0
x ∈ ℝn+1 L

L : ℝn+1 → ℝn+1 (x
1) → (A b

0 1) (x
1)

(A b
0 1) A ∈ GL(n), b ∈ Rn

GL(n + 1) GL(n + 1)

30

Rigid-Body Motion

A rigid-body motion (or rigid-body transformation) is a family of maps
,

which preserve the norm and cross product of any two vectors:
• ,

• .

Since norm and scalar product are related by the polarisation identity

,

once can also state that a rigid-body motion is a map which preserves inner product and cross
product. As a consequence, rigid-body motions also preserve the triple product

,
which means that they are volume-preserving.

gt : ℝ3 → ℝ3; X → gt(X), t ∈ [0,T]

|gt(v) | = |v | , ∀v ∈ ℝ3

gt(u) × gt(v) = g(u × v), ∀u, v ∈ ℝ3

⟨u, v⟩ =
1
4

(|u + v |2 − |u − v |2)

⟨gt(u), gt(v) × gt(w)⟩ = ⟨u, v × w⟩, ∀u, v, w ∈ ℝ3

31

Representation of Rigid-body Motion
Does the above definition lead to a mathematical representation of rigid-body motion?

Since it preserves length and orientation, the motion of a rigid body is sufficiently defined by specifying
the motion of a Cartesian coordinate frame attached to the object (given by an origin and orthonormal
orientation vectors). The motion of the origin can be represented by translation ,
whereas the transformation of the vectors is given by new vectors .

Scalar and cross product of these vectors are preserved:
.

The first constraint amounts to the statement that the matrix is an orthogonal (rotation)
matrix: , whereas the second property implies that , in other words: is an
element of the group .
Thus the rigid-body motion can be written as:

.

gt

e1, e2, e3 ∈ ℝ3 T ∈ ℝ3

ei ri = gt(ei)

rT
i rj = g(ei)Tg(ej) = eT

i ej = δi j, r1 × r2 = r3

R = (r1, r2, r3)
RT R = RRT = I det(R) = + 1 R

SO(3) = {R ∈ ℝ3 | RT R = I, det(R) = + 1}
gt

gt(x) = Rx + T

32

The Euclidean Group E(n)

A Euclidean transformation is defined by an orthogonal matrix and a
vector :

.
The set of all such transformation is called the Euclidean group . It is a subgroup of the affine
group . Embedded by homogenous coordinates we get:

.

If , then we have the special Euclidean group . In particular, represents
the rigid-body motions in .

In summary:
, .

L : ℝn → ℝn R ∈ O(n)
T ∈ ℝn

x → Rx + T
E(n)

A(n)

E(n) = {(R T
0 1) R ∈ O(n), T ∈ ℝn}

R ∈ SO(n) SE(n) SE(3)
ℝ3

SO(n) ⊂ O(n) ⊂ GL(n) SE(n) ⊂ E(n) ⊂ A(n) ⊂ GL(n + 1)

33

Sophus Library

34

#include <iostream>
#include <Eigen/Core>
#include <sophus/so3.h>
#include <sophus/se3.h>

int main(int argc, char* argv[]){
 Eigen::Matrix3d R_mat;
 R_mat << 1, 0, 0, 0, 1, 0, 0, 0, 1;

 Sophus::SO3d R_w_c(R_mat); // Rotation from camera to world
 std::cout << "R_w_i:\n" << R_w_c.matrix() << std::endl;

 Eigen::Vector3d t_w_c;
 t_w_c << 1, 2, 3;
 std::cout << "t: " << t_w_c.transpose() << std::endl;

 Sophus::SE3d T_w_c(
 R_w_c,
 t_w_c); // Rigid body transformation from camera to world
 std::cout << "T_w_c:\n" << T_w_c.matrix() << std::endl;

 Eigen::Vector3d p_c; // Point in the camera coordinate frame
 p_c << 1, 1, 10;

 Eigen::Vector3d p_w = T_w_c * p_c; // Should be (2, 3, 13)
 Eigen::Vector4d p_w_hom =
 T_w_c.matrix() * p_c.homogeneous(); // Should be (2, 3, 13, 1)

 std::cout << "p_w: " << p_w.transpose() << std::endl;
 std::cout << "p_w_hom: " << p_w_hom.transpose() << std::endl;

 Eigen::Vector3d p_c_new = T_w_c.inverse() * p_w; // Should be (1, 1, 10)
 std::cout << "p_c_new: " << p_c_new.transpose() << std::endl;

 return 0;
}

Exponential Coordinates of Rotation

We will now derive a representation of an infinitesimal rotation. To this end, consider a family of
rotation matrices which continuously transform a point from its original location () to
a different one.

, with .

Since , we have

.

Thus, is a skew-symmetric matrix. As shown in the section about the operator, this
implies that there exists a vector such that:

.

Since , it follows that . Therefore the skew-symmetric matrix
 gives the first order approximation of a rotation:

.

R(t) R(0) = I

Xtrans(t) = R(t)Xorig R(t) ∈ SO(3)
R(t)R(t)T = I, ∀t

d
dt

(RRT) = ·RRT + R ·RT = 0 ⟹ ·RRt = − R ·RT

·RRT ̂
w(t) ∈ ℝ3

·R(t)RT(t) = ŵ(t) ⟺ ·R(t) = ŵ(t)R(t)

R(0) = I ·R(0) = ω̂(0)
ŵ(0) ∈ so(3)

R(dt) = R(0) = dR = I + ŵ(0)dt

35

Lie Group and Lie Algebra

The above calculation showed that the effect of any infinitesimal rotation can be
approximated by an element from the space of skew-symmetric matrices

.
The rotation group is called a Lie group. The space so(3) is called Lie algebra.

Def.: A Lie group (or infinitesimal group) is a smooth manifold that is also a group, such that the
group operations multiplication and inversion are smooth maps.

As shown above: The Lie algebra is the tangent space at the identity of the rotation group
SO(3).

An algebra over a field is a vector space over with multiplication on the space .
Elements and of the Lie algebra generally do not commute.
One can define the Lie bracket

.

R ∈ SO(3)

so(3) = {ŵ |w ∈ ℝ3}
SO(3)

so(3)

K V K V
ŵ ̂v

[. , .] : so(3) × so(3) → so(3); [ŵ, ̂v] = ŵ ̂v − ̂vŵ

36

The Exponential Map

Given the infinitesimal formulation of rotation in terms of the skew-symmetric matrix , is it
possible to determine a useful representation of the rotation ? Let us assume is constant in
time.
The differential equation system

has the solution

,

which is a rotation around the axis by an angle of (if). Alternatively, one can
absorb the scalar into the skew symmetric matrix to obtain with .
This matrix exponential therefore defines a map from the Lie algebra to the Lie group:

.

ŵ
R(t) ŵ

{
·R(t) = ŵR(t),
R(0) = I .

R(t) = exp(ŵt) =
∞

∑
n=0

(ŵt)n

n!
= I + ŵt +

(ŵt)2

2!
+ . . .

w ∈ ℝ3 t |w | = 1
t ∈ ℝ ŵ R(t) = exp(̂v) ̂v = ŵt

exp : so(3) → SO(3); ŵ → exp(ŵ)

37

The Logarithm of SO(3)

As in the case of real analysis one can define an inverse function to the exponential map by the
logarithm. In the context of Lie groups, this will lead to a mapping from the Lie group to the Lie
algebra. For any rotation matrix , there exists such that . Such
an element is denoted by .
If , then an appropriate is given by:

.

For , we have , i.e. a rotation by an angle 0. The above statement says: Any
orthogonal transformation can be represented by rotating by and angle

around an axis as defined above.

Obviously the above representation is not unique since increasing the angle by multiples of
will give the same rotation .

R ∈ SO(3) w ∈ ℝ3 R = exp(ŵ)
ŵ = log(R)

R = (rij) ≠ I w

|w | = cos−1(trace(R) − 1
2), w =

|w |
2 sin(|w |)

r32 − r23
r13 − r31
r21 − r12

R = I |w | = 0
R ∈ SO(3) |w |

w
|w |

2π
R

38

Schematic Visualization of Lie Group and Algebra

Def.: A Lie group is a smooth manifold that is also a group, such that the group operations
multiplication and diversion are smooth maps.

Def.: The tangent space to a Lie group at the identity element is called the associated Lie
algebra.

The mapping from the Lie algebra to the Lie group is called the exponential map. Its inverse is
called logarithmic map.

39

Lie algebra

Lie group exp

log

Rodrigues’ Formula

We have seen that any rotation can be computed by . There exists a closed-form
version of the exponential map for

.

This is known as Rodrigues’ formula.

Proof: Let and . Then

,
and

.

R = exp(ŵ)
ŵ ∈ so(3)

exp(ŵ) = I +
sin(|w |)

|w |
ŵ +

1 − cos(|w |)
|w |2 ŵ2

t = |w | v =
w

|w |
̂v2 = vvT − I, ̂v3 = − ̂v, . . .

exp(ŵ) = exp(̂vt) = I + (t −
t3

3!
+

t5

5!
− . . .)

sin(t)

̂v + (t2

2!
−

t4

4!
+

t6

6!
− . . .)

1−cos(t)

̂v2

40

Lie Algebra for SE(3)

Given a continuous family of rigid-body transformation

; ,

we consider

.

As in the case of SO(3), the matrix corresponds to some skew-symmetric matrix .
Defining a vector , we have:

.

The matrix is called twist and can be parametrized with twist coordinates .

, .

g : ℝ → SE(3) g(t) = (R(t) T(t)
0 1) ∈ ℝ4×4

·g(t)g−1(t) = (
·RRT ·T − ·RRTT
0 0) ∈ ℝ4×4

·RRT ŵ ∈ so(3)
v(t) = ·T − ŵT(t)

·g(t)g−1(t) = (ŵ(t) v(t)
0 0) = ̂ξ(t) ∈ ℝ4×4

̂ξ ∈ se(3) ξ ∈ ℝ6

̂ξ = (v
w)

∧
= (ŵ v

0 0) ∈ ℝ4×4 (ŵ v
0 0)

∨

= (v
w) = ξ ∈ ℝ6

41

Exponential map and Logarithm for SE(3)

42

Similarly to SO(3) any rigid body transformation can be (not uniquely) represented by .

There exists a closed-form version of the exponential map for :

,

where is the left Jacobian of SO(3) and can be computed in closed form:

,

where .

The logarithm also has a closed-form solution:

.

In this case we first find with SO(3) logarithm and then , where the inverse
Jacobian also has a closed form:

.

R = exp(̂ξ)
̂ξ = (v

w)
∧

∈ se(3)

exp(̂ξ) = (exp(ŵ) Jv
0 1)

J

J = I +
1 − cos(θ)

θ2
ŵ +

θ − sin(θ)
θ3

ŵ2

θ = |w |

(v
w) = log (R t

0 1)
∨

w = log(R)∨ v = J−1t

J−1 = I −
1
2

ŵ + (1
θ2

−
1 + cos(θ)
2θ sin(θ))ŵ2

Lie Group and Algebra Summary

43

SO(3)

R ∈ ℝ3×3

RRT = I

det(R) = 1

Lie Group

SE(3)

T ∈ ℝ4×4

T = (R t
0 1)

Lie Group

so(3)
w ∈ ℝ3

Lie Algebra

ŵ =
0 −w3 w2

w3 0 −w1

−w2 w1 0θ = cos−1(trace(R) − 1
2) w =

θ
2 sin(θ)

r32 − r23
r13 − r31
r21 − r12

exp(ŵ) = I +
sin(θ)

θ
ŵ +

1 − cos(θ)
θ2

ŵ2

exp(̂ξ) = (exp(ŵ) Jv
0 1) J = I +

1 − cos(θ)
θ2

ŵ +
θ − sin(θ)

θ3
ŵ2

J−1 = I −
1
2

ŵ + (1
θ2

−
1 + cos(θ)
2θ sin(θ))ŵ2

se(3)
ξ ∈ ℝ6

Lie Algebra

Rotation Matrix

Rigid Body Transform Matrix

Exponential

Exponential

Logarithm

Logarithm ̂ξ = (v
w)

∧
= (ŵ v

0 0)

θ = |w |

θ = |w |

w = log(R)∨

v = J−1t

Sophus Expmap and Logmap

44

#include <iostream>
#include <Eigen/Core>
#include <sophus/so3.h>
#include <sophus/se3.h>

int main(int argc, char* argv[]){
 Eigen::Vector3d rand_vec3 =
 Eigen::Vector3d::Random() / 100.0; // Small random vector
 std::cout << "rand_vec3: " << rand_vec3.transpose() << std::endl;

 // Sophus also has a hat and vee operator, but exp and log already include them as shown below
 // Sophus::SO3d::hat(rand_vec3);

 Sophus::SO3d rand_R = Sophus::SO3d::exp(rand_vec3);
 std::cout << "rand_R:\n" << rand_R.matrix() << std::endl;

 Eigen::Vector3d log_rand_R =
 rand_R.log(); // Should be the same as rand_vec3

 std::cout << "log_rand_R: " << log_rand_R.transpose() << std::endl;

 // Sophus::Vector6d is an alias for Eigen::Matrix<double, 6, 1>
 Sophus::Vector6d rand_vec6 =
 Sophus::Vector6d::Random() / 100.0; // Small random vector
 std::cout << "rand_vec6: " << rand_vec6.transpose() << std::endl;

 Sophus::SE3d rand_T = Sophus::SE3d::exp(rand_vec6);
 std::cout << "rand_T:\n" << rand_T.matrix() << std::endl;

 Sophus::Vector6d log_rand_T =
 rand_T.log(); // Should be the same as rand_vec3
 std::cout << "log_rand_T: " << log_rand_T.transpose() << std::endl;
 return 0;
}

Summary of Lie Groups

• Reasons to use Lie Groups
• Unified representation of many transformations

• rotation SO(3) SO(2)
• rigid body transformations SE(3) SE(2)
• scaling Sim(3) Sim(2)
• and others

• Easy concatenation of transformations with matrix multiplication
• Easy applications
• No singularities (because overparametrizes)
• Minimal parametrisation of updates using Lie algebra coordinates (allows unconstrained

optimization)

45

Local Parametrization in Ceres

46

class LocalParameterizationSE3 : public ceres::LocalParameterization {
 public:
 virtual ~LocalParameterizationSE3() {}

 virtual bool Plus(double const* T_raw, double const* delta_raw,
 double* T_plus_delta_raw) const {
 Eigen::Map<SE3d const> const T(T_raw);
 Eigen::Map<Vector6d const> const delta(delta_raw);
 Eigen::Map<SE3d> T_plus_delta(T_plus_delta_raw);
 T_plus_delta = T * SE3d::exp(delta);
 return true;
 }

 virtual bool ComputeJacobian(double const* T_raw,
 double* jacobian_raw) const {
 Eigen::Map<SE3d const> T(T_raw);
 Eigen::Map<Eigen::Matrix<double, 7, 6, Eigen::RowMajor>> jacobian(
 jacobian_raw);
 jacobian = T.Dx_this_mul_exp_x_at_0();
 return true;
 }

 virtual int GlobalSize() const { return SE3d::num_parameters; }

 virtual int LocalSize() const { return SE3d::DoF; }
};

Exercise 1

In the first exercise you should:
• Review the history and current state of SLAM.
• Clone and set up the repository with the code for the practical course.
• Get familiar with CMake parameters used in the project.
• Implement exp and log functions without built-in Sophus functions.
• Enable the tests for this exercise and push your solution to the server for automatic evaluation
• Prove the formula of the Jacobian used in SE(3) exponential map.

47

