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Topics Covered

* Introduction
— Structure from Motion (SfM)
— Simultaneous Localization and Mapping (SLAM)

* Bundle Adjustment
- Energy Function
— Non-linear Least Squares
— Exploiting the Sparse Structure

* Triangulation



Structure from Motion

Agarwal et al., “Building Rome in a day”, ICCV 2009, “Dubrovnik” image set

3D reconstruction using a set of unordered images

* Requires estimation of 6DoF poses



Simultaneous Localization and Mapping (SLAM) TUTI

Engel et al., “LSD-SLAM: Large-Scale Direct Monocular SLAM”, ECCV 2014

« Estimate 6DoF poses and map from sequential image data

« Update once new frames arrive



Problem Definition SfM / Visual SLAM TUmM

Estimate camera poses and map from a set of images
* Input

Set ofimages Iy, = {1y, 1}, ..., 1.}

Additional input possible

» Stereo
* Depth
* Inertial measurements
« Control input fr3/long_office_household sequence,
TUM RGB-D benchmark
e Qutput

Camera pose estimates 'T; € SE(3),
also written as §; = (log Ti)v 1 € {0,1,...,1}

Environment map M

Mur-Artal et al., 2015



Typical StTM Pipeline

1) Map initialization
— Using 2D-to-2D correspondences
— Recover pose (stereo pair if available)
— Triangulate landmarks using pose

v

2) Localization with known map
— Using 2D-to-3D correspondences

l

3) Mapping with known poses
— Using 2D-to-2D correspondences
— Triangulation

l

4) Joint refinement of map and poses
— Using 2D-to-2D correspondences
— Bundle adjustment

lterate to add new frames




Visual SLAM TUT

SLAM C SfM, with special focus:
« Sequential image data
« Data arrives sequentially

StM SLAM

 Preferably realtime
« More focus on trajectory

Technical solutions:
« Windowed optimization
« Selection of keyframes \

« Removal of keyframes (e.g. marginalization)

=% Accumulation of drift

« Detect loop closures
* Global mapping in separate thread
(e.g. pose graph optimization)

1 Loop closure
Odometry o

* No global mapping
* Incremental tracking only

e Local map possible Clemente et al., RSS 2007




Landmarks and Features

m

CT,i

« The map consists of 3D locations of landmarks

M = {ml,mz, ...,mS}

—

yT,i

« Forimage 7, the set of 2D image coordinates of detected features is denoted

YT = {yr,l’ yr,2’ cee yr,N}

* Known data association:
Feature 7 in image 7 corresponds to landmark j = ¢_;

(1<i<N,1<j<58)



Bundle Adjustment Energy TUTI

1 T
_ 0 —1 0 Absolute
E (§O:t’ M) — 5 (§O 9§ ) 20,5 (50 9§ ) pose ;rior
1 t N, T
4 - h ( ., m, )> Z_l. ( = h < ., m, )) Reprojection
2 120 le <y ’ 7,1 yT,l y ’ 7,1 error

* Pose prior: Fix absolute pose ambiguity

— In this case equivalent to keeping &, = &’
— Keep absolute pose information e.g. when first frame is marginalized
 Additional prior to fix scale ambiguity might be necessary

mo @ @ @ 3D coordinates of map points

.

Reprojection errors

Absolute pose fixed by &°

H & @ @

Camera poses



Energy Function as Non-linear Least Squares TUTI

(€ )
0
 Residuals as function of state vector X :
r'(x):= &, © & X (= g
m;
rz X)=y,,—h (ft, mct,i) :
s

o Stack the residuals in a vector-valued function und collect the residual covariances on the
diagonal blocks of a square matrix

(I‘O(X)\ (26,%’ 0 0 )
~1
r(x) := 0.1 W= O
: : : .0
y ~1
), L

 Rewrite energy functionas  E(X) = Er(X)TWr(X)



Recap: Gauss-Newton Method

- Idea: Approximate Newton’s method to minimize E(X)
« Approximate E(X) through linearization of residuals

. |
Ex) = Er(x) Wr(x)

= % <r (Xk) + J, (X — xk)>TW (r (Xk) + J, (X — Xk))
= r (%) W (x) + r (%) Wl (x-x) b2 (x=x) ITWI, (x -

« Finding root of gradient as in Newton’s method leads to update rule

VL EX)=b] + (x— Xk)T H,

k iteration index

J, := V. r(x)

X=Xk

Xy)

_ —1
X1 = X — Hk b,

V.Ex)=0 iff x =x,— H 'b,

* Pros:

» Faster convergence than gradient descent (approx. quadratic convergence rate)
« Cons:

- Divergence if too far from local optimum (H not positive definite)

 Solution quality depends on initial guess
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Structure of the Bundle Adjustment Problem

. b, and H, sum terms from individual residuals:

t N, r N,
— Ko g O
=b0+ Y Y b= (1) +22< > = (x,)
=0 i=1 =0 i=1
t N, t N,
0 _ 0 J&
Hk—H +22HZ’ O§ J +ZZ( l) (Jrz)
=0 i=1 =0 i=1
J? Jacobian of pose prior
JZ’i Jacobian of residuals for feature 7 in image 7

 What is the structure of these terms?

TuTi
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Structure of the Bundle Adjustment Problem  TUTI

& € m, myg

P TTT T1

Nr
b= b+ Y Y bpi= ()2

=0 =1

%o M
. Il

r'x,) B
rZ,i(Xk) .

dense vector
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Structure of the Bundle Adjustment Problem  TUTI

IIO

& € m, myg

NT
“H)+ Y Y= (1)

=0 i=1

%o M
. Il

T

=0 i=1

r'x,) B
I’Z,i(xk) .

Diagonal, typically S > ¢

x4 (39) +2§:(J) = (JF)
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Example Hessian of a BA Problem

Lourakis et al., 2009

Large, but sparse!

How to invert efficiently?
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Exploiting the Sparse Structure

* |ldea:
Apply the Schur complement to solve the system in a partitioned way

He Hg,
HkAX — _bk q H g H

Axg
AX

1
=P Ax, = = (Hg - HHih By ) (b= HgHilib, )

—p Ax = —H (bm + ngAX§>

* Is this any better?

)

b,

b

m
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Exploiting the Sparse Structure

* What is the structure of the two sub-problems?

 Poses:
Ax, = — H§§ H, H;,

mm m§

H, — He, Hyl H, e = Hee — ZHgmHmm g
j=1
Reduced pose Hessian

b, —

H§m mm m

H§m mm m

ZHzfm mm m
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Exploiting the Sparse Structure

* What is the structure of the two sub-problems?

~1
* Poses: AX§= — <H§§ HgmH ng) <b§_

e \ /

Poses that observe landmark j

i 2

H,,, H,

mmm
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Exploiting the Sparse Structure

* What is the structure of the two sub-problems?

 Landmarks:

e Axmj = — H;;.mj (bmj + Hmngxg

« Landmark-wise solution
« Comparably small matrix operations
* Only involves poses that observe the landmark

19



Exploiting the sparse structure

‘4
(4
-
‘4
-

1
AXg = — (H§§ — Hy, H;L H ) (bg _ HgmH;fmbm>

mm-mé

As a result, only a much smaller matrix
has to be inverted
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Exploiting the Sparse Structure TUm

Camera on a moving vehicle Flickr image search “Dubrovnik”
(6375 images) (4585 images)

Agarwal et al., ECCV 2010

* Reduced pose Hessian can still have a sparse structure

* For many camera poses with many shared observations, the inversion of the reduced pose
Hessian is still computationally expensive!

 Exploit further structure, e.g. using variable reordering or hierarchical decomposition
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Effect of Loop Closures on the Hessian TUTI

Full Hessian &

§1/

| d

Reduced pose Hessian

&

&o

Band matrix Before loop closure
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Effect of Loop Closures on the Hessian TUTI

Full Hessian &

§1/

| :

Reduced pose Hessian

&

&o

No band matrix: costlier to solve After loop closure
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Further Considerations TUT

Many methods to improve convergence / robustness / run-time efficiency, e.qg.

« Use matrix decompositions (e.g. Cholesky) to perform inversions

« Levenberg-Marquardt optimization improves basin of convergence

« Heavier-tail distributions / robust norms on the residuals can be implemented using iteratively
reweighted least squares

* Preconditioning

* Hierarchical optimization

 Variable reordering

« Delayed relinearization
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Triangulation Ut

* Find landmark position given the camera poses
* |Ideally, the rays should intersect

* In practice, many sources of error: pose estimates, feature detections and camera model /
intrinsic parameters
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Triangulation TUm

. Goal: Reconstruct 3D point X = (x,y, z, w)' € P’ from 2D image observations ¥ ..., Yu ) for
known camera poses { T, ..., Ty}

 Linear solution: Find 3D point such that reprojections equal its projection

(P, \
— Foreachimage i, let T. = P> and y. = u
’ l p3 l V
0 0 0 1,
X/psX
- Projecting X yields y; =7 (Tii) — <p1~ p3~>
P,X/p;sX 5 5
X = X
- Requiring y; =y, gives two linear equations per image: p1~ up3~
PoX = VP3X

— Leads to system of linear equations AX = (), two approaches to solve:
- Set w = 1 and solve non-homogeneous least squares problem
— Find nullspace of A using SVD, then scale such thatw = 1

N
« Non-linear least squares on reprojection errors (more accurate): min Z ly; — yl’||%
X
=1

« Different solutions for different methods in the presence of noise



Exercises TUTI

Exercise sheet 4 ceres::Solver: :0ptions ceres options;
i i ti . iterati
* Implement components of SfM pipeline ceres_options.max num_iterations

ceres options.linear solver type

« BA: Ceres can do the Schur complement P ceres::SPARSE SCHUR;

« Triangulation: use OpenGV'’s triangulate function 22:.22—"1;’21325“‘;ﬁ;ﬁﬁ;ajﬁmmary
Solve(ceres options, &problem,
&summary) ;
std: :cout << summary.FullReport() <<
std: :endl;

.
14

Next slide

Exercise sheet 5
* Implement components of odometry
« Similar to sheet 4, but:
— More efficient 2D-3D matching using approximate pose of previous frame
— New keyframe if number of matches too small
— New landmarks by triangulation from stereo pair
— Keep runtime bounded by removing old keyframes

27



Parameter blocks

Parameters

Effective parameters
Residual blocks

Residuals

Minimizer

Sparse linear algebra library
Trust region strategy

Linear solver

Threads

Linear solver ordering
Schur structure

Cost:
Initial
Final
Change

Minimizer iterations
Successful steps
Unsuccessful steps

Time (in seconds):

Preprocessor

Residual only evaluation
Jacobian & residual evaluation
Linear solver

Minimizer

Postprocessor

Total

Termination:
iterations:

Original
4896
15354
15190
24014
48028

TRUST REGION

SUITE SPARSE

LEVENBERG MARQUARDT

Given
SPARSE_SCHUR
8

AUTOMATIC
2,3,6

3.979886e+03
3.766801e+03
2.130843e+02

21

21
0

0.048047

R O O O

134797

o

.001068
1.183913

.069569 (20)
388923 (21)
.586967 (20)

Reduced
4892
15324
15162
24014
48028

Used

SPARSE SCHUR
8

4730,162
2,3,6

NO CONVERGENCE (Maximum number of iterations reached. Number of
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Summary

StM

« Estimate map and camera poses from set of images
« SLAM: Sequential data, real-time

* Odometry: No global mapping

Bundle Adjustment
* Non-linear least squares problem
« Sparse structure of Hessian can be exploited for efficient inversion

Triangulation
 Linear and non-linear algorithms
 Differences in the presence of noise
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