

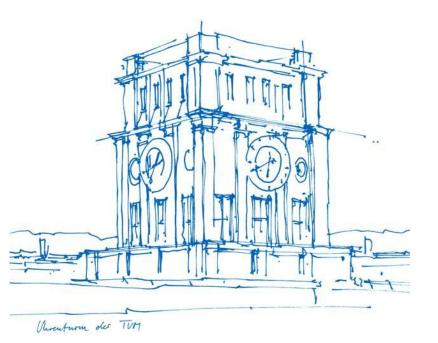
Beyond Deep Learning: Selected Topics

Christian Tomani, Yuesong Shen

Technical University of Munich

Chair of Computer Vision and Artificial Intelligence

Garching, January 29th, 2021



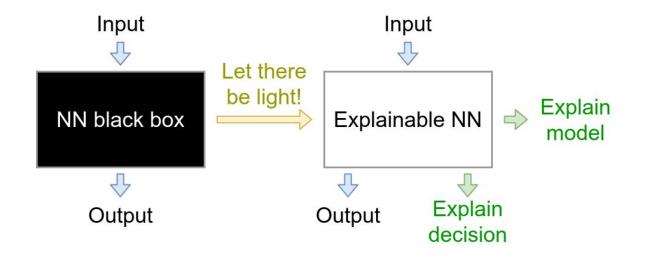
Agenda

- What are the topics we will cover?
 - Understanding Neural Networks
 - Alternatives to Neural Networks
 - Uncertainty Aware Models
 - Time Series and Sequence Models
- How is the course organized?
- How to apply?

Understanding Neural Networks

Understanding Neural Networks: why?

- Ensure robustness, fairness, etc. for critical applications
- Provide guidance for debugging / improving the model



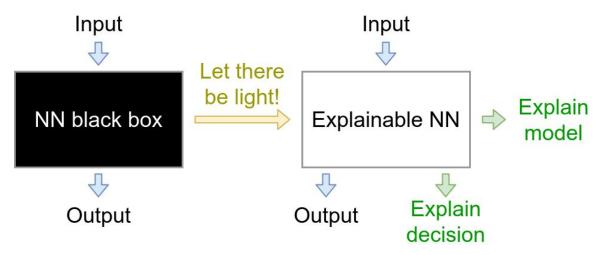
Understanding Neural Networks: how?

• Practical behavior:

Training dynamics of NN, "post-hoc" model / decision interpretability ...

• Theoretical mechanics:

Can we do better than the universal function approximation theory?



Alternatives to Neural Networks

Alternatives to Neural Networks: why?

Neural network is currently the "star model" in the machine learning community

 \Rightarrow Why should we care about alternative ML models?

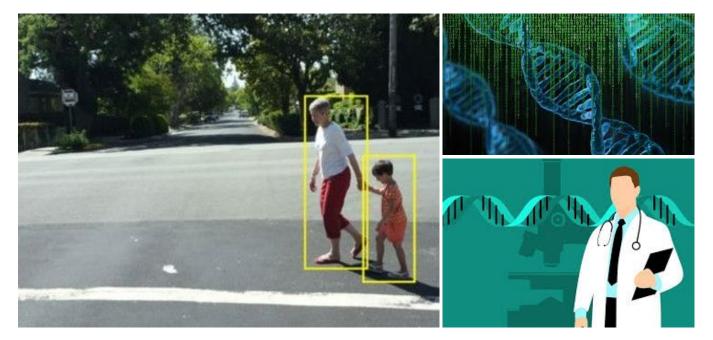
- NN does not offer solution to all problems
- Alternative solutions for generative modeling, unsupervised learning, uncertainty estimation ...
- Offer inspirations for improving NN / combination
- Better appreciate the strong / weak points of NN

$(\pm$ 0.5 0.3 Alternatives to Neural Networks: which? 0.2 <u>(0.4 0.9</u> \pm 0.7 0.2 Some possible alternatives to neural network: 0.6 0.10.3 0.8 $\overline{X_2}$ X_{1} X_{I} X2 Deep Gaussian process Deep belief network Deep Boltzmann machine Sigmoid belief network Sum-product network . . .

Original Image published in: "Sum-Product Networks: A New Deep Architecture, Poon and Domingos, 2011"

Uncertainty Aware Models

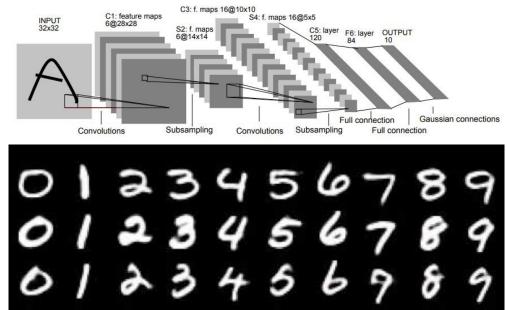
Safety critical applications



Setup

The issue with Deep Learning - Can we trust the model?

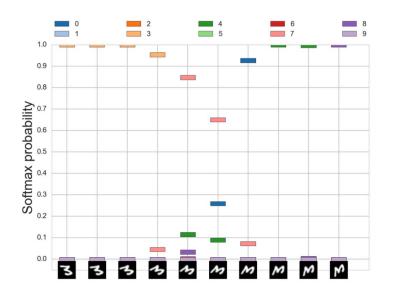
LeNet-5 Model with weight decay



MNIST Dataset

LeCun et al. - Gradient Based Learning Applied to Document Recognition, 1998 https://github.com/cazala/mnist

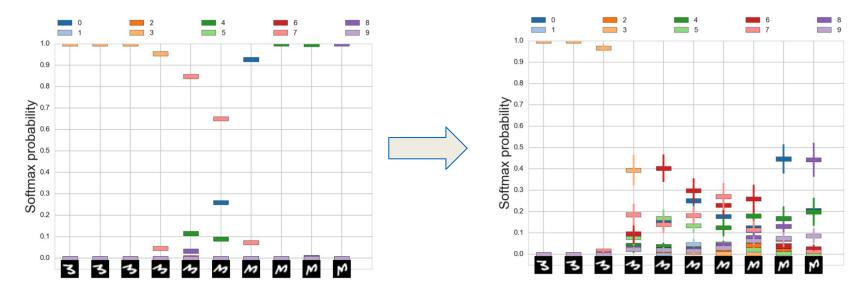
The issue with Deep Learning - Can we trust the model?



Vanilla LeNet-5 Model on MNIST

- Model is unreliable and not calibrated
- Gives totally wrong but highly confident predictions if data is perturbed
- wrong predictions cannot be distinguished from correct ones

The issue with Deep Learning - Can we trust the model?



Time Series and Sequence Models

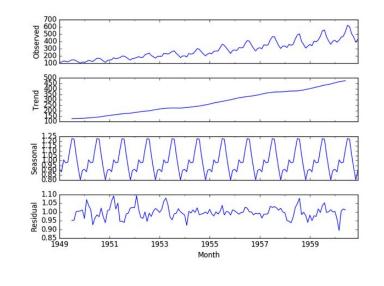
Time Series Basics

2 Types of time series:

- univariate time series
- multivariate time series

Decomposition of time series:

- d, trend component (deterministic)
- c, cyclical component (deterministic, periodic)
- s, seasonal component (deterministic, periodic)
- ε_t irregular component (stochastic, stationary)



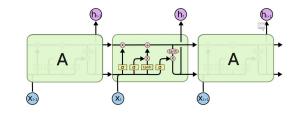
$$y_t = d_t + c_t + s_t + \epsilon_t$$

Time Series Models

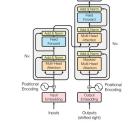
Autoregressive Model:

$$X_t = c + \sum_{i=1}^p arphi_i X_{t-i} + arepsilon_t$$

Long Short Term Memory Model (LSTM):

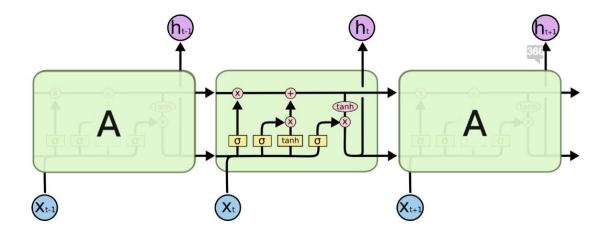


Transformer Models:

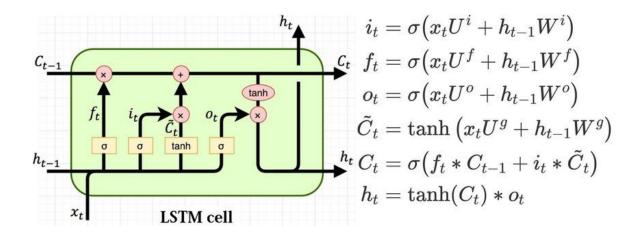


https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Vasvani et al.: Attention is all you need, 2017

Long Short Term Memory Model (LSTM)



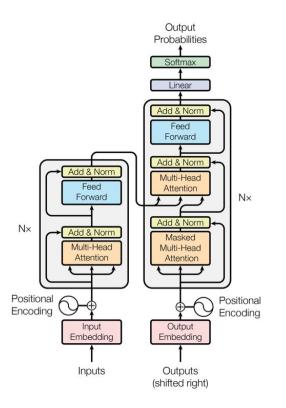
Long Short Time Model (LSTM)



Savvas et al.: Designing neural network based decoders for surface codes, 2018/11/29

Transformer Models

- Encoder and decoder stacks
- Attention
- No recurrent neural network
- Applications:
 - Sequence modeling
 - Language translation
 - Text processing



Course logistics

20

Course Organization

Course website: https://vision.in.tum.de/teaching/ss2021/bdlstnc_ss2021

Course email: bdlstnc-ss21@vision.in.tum.de

Course structure:

- Kick-Off Meeting with all the topics (15th of April)
- Matching to the topics
- Read the papers and do a literature search and elaborate on the topic you are provided with
- Get optional help, if you did not understand the paper
- Send a first draft of the presentation as well as the report and get optional feedback
- Presentations take place on the 29th-30th June
- Final report will be due after the presentations

Prerequisites

• Machine learning & deep learning knowledge:

Basic ML concepts and ML/DL models

Min. Requirement: passed one ML/DL related course (I2ML, I2DL, ADL4CV ...)

• Soft skills:

Manage regular workflow and communicate with tutors efficiently

- We also value:
 - solid basis & interest for maths
 - prior experience with ML/DL projects

How to apply

- 1. Apply via the **TUM Matching system** (February 11th 16st, 2021)
 - If you like our course, make sure to give it a high priority :)
- 2. Send us an email to show your interest and fulfillment of prerequisites
 - Crucial for us to give you a priority
- The email should be sent to <u>bdlstnc-ss21@vision.in.tum.de</u> **latest February 14**th with the title "[Application] <Firstname> <Lastname>" and contain
 - Filled information form (template on course website, rename to "firstname_lastname.xlsx")
 - Transcript
 - **CV**

Thank you! Questions?

