

Seminar: Recent Advances in 3D Computer Vision

Mohammed Brahimi, Björn Häfner, Christiane Sommer Computer Vision Group Technical University of Munich

Tur Uhrenturm

How can I access these slides?

- Option 1 (preferred): seminar web page
 - https://vision.in.tum.de/teaching/ss2021/seminar_3dcv
 - Password for material page: ss21-3dcv
 - Material page will go online after this pre-meeting
- Option 2: contact organizers
 - 3dcv-ss21@vision.in.tum.de
 - Only use this option if you forgot the password
 - Do not write to our personal email address

- General Information
 - About the Seminar
 - Registration
- Possible Papers
 - 3D Scene Representation using Neural Networks
 - Photometric reconstruction
 - RGB-D scanning and refinement
- Questions

- General Information
 - About the Seminar
 - Registration
- Possible Papers
 - 3D Scene Representation using Neural Networks
 - Photometric reconstruction
 - RGB-D scanning and refinement
- \circ Questions

How is the seminar organized?

- Seminar meetings: talks and discussion
 - Days: Wednesday, April 7th and Thursday, April 8th
 - Time: 9:00 17:00
 - Location: virtual (on BBB)
 - 6 talks per day
 - Attendance is mandatory! If you do not have time on one of the two days, do not register! (Exception: exams)
- Talk preparation / contact with supervisor
 - Read through your paper yourself and write down what you do not understand
 - Approx. **one month before** talk: meet supervisor for questions (optional, but recommended)
 - One week before talk: meet supervisor to go through slides (optional, but recommended)
 - April 2nd: submit your slides via submission system (mandatory)
 - April 23rd: submit your report via submission system (mandatory)

Mohammed Brahimi, Björn Häfner, Christiane Sommer (TUM) | Computer Vision Group | February 1st, 2021

What about the presentation?

- General set-up:
 - Duration: 20–25 minutes talk + 10–15 minutes discussion
 - Make sure to finish on time not too early and not too late!
 - Rule of thumb: 1–2 minutes per slide \rightarrow 10–20 slides
 - Do not put too much information on the slides!
- Recommended structure (talk):
 - Introduction
 - Overview / Outline
 - Method description
 - Experiments and results
 - Personal comments
 - Summary

What about the discussion after each talk?

- Discussion afterwards will influence your grade
- Ask questions!
- There are **no** stupid questions!

What about the final report?

- General set-up:
 - Use LATEX template provided on web page
 - Length: 3-4 pages (without bibliography)
 - Upload final report as pdf via submission system
 - Submission deadline: April 23rd
- Recommended structure (main text only):
 - Introduction
 - Method description
 - Experiments and results
 - Discussion of results
 - Summary

- General Information
 - $\circ~$ About the Seminar
 - Registration
- Possible Papers
 - 3D Scene Representation using Neural Networks
 - Photometric reconstruction
 - RGB-D scanning and refinement
- \circ Questions

How do you register for the seminar?

- Step 1: Official registration via TUM matching system
 - Go to https://matching.in.tum.de
 - Register for seminar with the title Recent Advances in 3D Computer Vision
- Step 2: Personal registration via email
 - In the list of papers on the web page, select your three favorites
 - Write an email ranking these three favorites to the seminar email address
 - Email subject: "[3DCV] application [your name]"
 - Include information about related lectures / courses you have taken so far
 - We do **not** need your CV or a motivation letter!
 - Registrations without email / emails with missing information will be ignored!
- Deadline for both registrations: February 16th, 2021

How do you register for the seminar?

Example registration email:

1.0	
	An 3dcv-ss21@vision.in.tum.de
_	Betreff [3DCV] application [your name]
	Normaler Text 🗸 Variable Breite 🗸 🖛 🗚 🗛 🗛
	Hi Mohammed, Björn and Christiane,
)i	I would like to present one of the following papers: 1. Paper A 2. Paper B 3. Paper C
n	In the past, I have taken these related courses: - CV2 (summer 20)
n	Best,

ПП

How do we select candidates and assign papers?

- Candidate selection
 - Only students registered in the matching system AND emails containing all required information will be considered
 - Among students meeting the formal criteria, selection will be random
 - Note that if you have not taken any related course, you must be willing to invest a lot of work to learn the required basics
 - You will get notified by the matching system about the decision (February 25th, 2021)
- Paper assignment
 - Papers are assigned after the participant list is finalized
 - We give our best to accommodate your preference list in the assignment

- General Information
 - About the Seminar
 - Registration
- Possible Papers
 - 3D Scene Representation using Neural Networks
 - Photometric reconstruction
 - RGB-D scanning and refinement
- Questions

Occupancy Networks: Learning 3D Reconstruction in Function Space

Mescheder, Oechsle, Niemeyer, Nowozin, Geiger 2019

- Train a NN to predict the occupancy probability for a point in space and extract the isosurface
- The above representation can be condition on an additional input which allows for: Single Image 3D Reconstruction, Super Resolution, etc.

Implicit geometric regularization for learning shapes

Gropp, Yariv, Haim, Atzmon, Lipman 2020

- Train a NN to predict the SDF for a point in space and extract the isosurface
- Use norm of gradient as a regularizer

Implicit neural representations with periodic activation functions

Sitzmann, Martel, Bergman, Lindell, Wetzstein 2020

ReLU (baseline)

SIREN (ours)

• Focus on activation functions that enable high resolution

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

Mildenhall et al. 2020

- For a set of images of one scene train one NN that maps (x, y, z, θ, φ) → (RGBσ) using volume rendering and image based losses
- The NN can be used to generate novel views and gives very impressive results

MeshSDF: Differentiable Iso-Surface Extraction

Remelli et al. 2020, NeurIPS

- Differentiable mapping from deep signed distance functions to mesh-based representation
- Makes "marching cubes" differentiable

- General Information
 - $\circ~$ About the Seminar
 - Registration
- Possible Papers
 - 3D Scene Representation using Neural Networks
 - Photometric reconstruction
 - RGB-D scanning and refinement
- Questions

Sparse Photometric 3D Face Reconstruction Guided by Morphable Models

Xuan Cao et al. 2018

 A highly accurate 3D face is generated by solving an inverse rendering problem with the help of a 3D morphable model, using few input images taken by a fix camera, under unknown changing lighting.

Robust Multiview Photometric Stereo using Planar Mesh Parameterization

Jaesik Park et al. 2016

Initial 3D reconstruction

Refined result

- Many images of an object are taken by several fix cameras, under unknown changing lighting.
- By using the input images and an initial coarse mesh obtained with an existing multiview technique, a displacement map is optimized in order to produce a detailed mesh.

Inverse Path Tracing for Joint Material and Lighting Estimation

Azinovic et al. 2019, CVPR

- Inverse Rendering (hot topic in graphics and vision)
- Recover scene properties (material and light sources) in room-scale environments
- Formulates inverse differentiable path tracer

Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF from a Single Image

Li et al. 2020, CVPR

- Inverse Rendering (hot topic in graphics and vision)
- Train Neural Net to recover scene properties from a single image
- · Photorealistic object insertion and material editing

- General Information
 - About the Seminar
 - Registration
- Possible Papers
 - 3D Scene Representation using Neural Networks
 - Photometric reconstruction
 - RGB-D scanning and refinement
- Questions

Combining Depth Fusion and Photometric Stereo for Fine-Detailed 3D Models

Erik Bylow et al. 2019

Volumetric fusion

Final result

 Several RGB images of an object are captured with fix camera positions under varying unknown natural illuminations, and they are used to optimize the SDF initialized with a Volumetric Fusion of an RGB-D sequence.

TextureFusion: High-Quality Texture Acquisition for Real-Time RGB-D Scanning

Joo Ho Lee et al. 2020

No refinement

Offline optimization

TextureFusion

- While scanning an indoor environment with an RGB-D camera, perform a real-time Texture fusion and refinement with a higher resolution than the Geometric fusion.
- The final texture do not require any additional adjustement and can be even better than those obtained with an offline optimization.

Mohammed Brahimi, Björn Häfner, Christiane Sommer (TUM) | Computer Vision Group | February 1st, 2021

KillingFusion: Non-rigid 3D Reconstruction without Correspondences

Miroslava Slavcheva et al. 2017

- Estimate a 3D reconstruction of a deforming object from an RGB-D sequence, without relying on additional priors.
- The use of SDF to represent geometry and a dense deformation field allow to handle complicated topological changes.

Mohammed Brahimi, Björn Häfner, Christiane Sommer (TUM) | Computer Vision Group | February 1st, 2021

Questions?

Reminder:

- Web page: https://vision.in.tum.de/teaching/ss2021/seminar_3dcv
- Password: ss21-3dcv
- Contact: 3dcv-ss21@vision.in.tum.de