

Seminar: The Evolution of Motion Estimation and Real-time 3D Reconstruction

Christiane Sommer, Lukas Köstler Computer Vision Group Technical University of Munich

Tur Uhrenturm

How can I access these slides?

- Option 1 (preferred): seminar web page
 - https://vision.in.tum.de/teaching/ss2021/seminar_realtime3d
 - Password for material page: ss21-realtime3d
 - Material page will go online after this pre-meeting
- Option 2: contact organizers
 - realtime3d-ss21@vision.in.tum.de
 - Only use this option if you forgot the password

Outline

- General Information
 - About the Seminar
 - Registration
- Possible Papers
 - Depth and RGB-D Sensors
 - Monocular Cameras
- Questions

Outline

- General Information
 - About the Seminar
 - Registration
- Possible Papers
 - Depth and RGB-D Sensors
 - Monocular Cameras
- Questions

How is the seminar organized?

- Seminar meetings: Talks and discussion
 - Day: Tuesday, approximately 8 sessions (TBA)
 - Time: 14:00-16:00
 - Location: virtual (on Zoom)
 - Each session will consist of two talks which are held in English
 - Attendance is mandatory!
- Talk preparation / contact with supervisor
 - Day: Tuesday
 - Time: one hour between 16:00 and 18:00
 - Four weeks before talk: meet supervisor for questions (optional, but recommended)
 - Two weeks before talk: meet supervisor to go through slides (optional, but recommended)
 - One week before talk: upload slides to submission system (mandatory)
- Two weeks after talk: upload report to submission system (mandatory) Christiane Sommer, Lukas Köstler (TUM) | Computer Vision Group | February 2nd, 2021

What about the presentation?

- General set-up:
 - Duration: 20–25 minutes talk + 10–15 minutes discussion
 - Make sure to finish on time not too early and not too late!
 - Rule of thumb: 1–2 minutes per slide \rightarrow 10–20 slides
 - Do not put too much information on the slides!
- Recommended structure (talk):
 - Introduction
 - Overview / Outline
 - Method description
 - Experiments and results
 - Personal comments
 - Summary

What about the discussion after each talk?

- Discussion afterwards will influence your grade
- Ask questions!
- There are **no** stupid questions!

What about the final report?

- General set-up:
 - Use LATEX template provided on web page
 - Length: 3-4 pages
 - Upload final report as pdf
 - Submission deadline: Two weeks after talk
- Recommended structure (main text only):
 - Introduction
 - Method description
 - Experiments and results
 - Discussion of results
 - Summary

Outline

- General Information
 - $\circ~$ About the Seminar
 - Registration
- Possible Papers
 - Depth and RGB-D Sensors
 - Monocular Cameras
- Questions

How do you register for the seminar?

- Step 1: Official registration via TUM matching system
 - Go to https://matching.in.tum.de
 - Register for seminar with the title The Evolution of Motion Estimation and Real-time 3D Reconstruction
- Step 2: Personal registration via email
 - In the list of papers on the web page, select your three favorites
 - Write an email ranking these three favorites to the seminar email address
 - Email subject: "[Realtime3D] application [your name]"
 - Include information about related lectures / courses you have taken so far
 - We do **not** need your CV or a motivation letter!
 - Registrations without email / emails with missing information will be ignored!
- Deadline for both registrations: February 16th, 2021

How do you register for the seminar?

Example registration email:

An	realtime3d-ss21@	vision.in.tum	.de					
Betreff	[Real-time 3D] application [your name]							
Normaler Text 🗸	Variable Breite	v	A	A*	A*	A	A	A
i Hi Lukas and Chr	istiane,							
would like to pr	esent one of the	following	nane	ers.				
1. Paper A	esent one of the	TOHOWINB	pupe	10.				
2. Paper B								
3. Paper C								
In the past, I hav	e taken these rel	ated cours	es:					
- CV2 (summer 2	0)							
- Practical course	Visual Navigatio	on (winter)	20)					
Best,								

ПП

How do we select candidates and assign papers?

- Candidate selection
 - Only students registered in the matching system AND emails containing all required information will be considered
 - Among students meeting the formal criteria, selection will be random
 - Note that if you have not taken any related course, you must be willing to invest a lot of work to learn the required basics
 - You will get notified by the matching system about the decision (February 25th, 2021)
- Paper assignment
 - Papers are assigned after the participant list is finalized
 - We give our best to accommodate your preference list in the assignment

Outline

- General Information
 - $\circ~$ About the Seminar
 - Registration
- Possible Papers
 - Depth and RGB-D Sensors
 - Monocular Cameras
- Questions

ПП

KinectFusion

R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and A. W. Fitzgibbon. Kinectfusion: Real-time dense surface mapping and tracking.

In 10th IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2011, Basel, Switzerland, October 26-29, 2011, pages 127–136. IEEE Computer Society, 2011

- First paper to generate dense 3D models in real-time using depth sensor and GPU
- Highly cited, impactful, baseline method for 3D reconstruction using RGB-D cameras

SDF-Tracking

E. Bylow, J. Sturm, C. Kerl, F. Kahl, and D. Cremers. Real-time camera tracking and 3d reconstruction using signed distance functions.

In P. Newman, D. Fox, and D. Hsu, editors, *Robotics: Science and Systems IX, Technische Universität* Berlin, Berlin, Germany, June 24 - June 28, 2013, 2013

• Nice introduction to SDFs using RGB-D cameras

Dense Visual Odometry

C. Kerl, J. Sturm, and D. Cremers. Robust odometry estimation for RGB-D cameras.

In 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, May 6-10, 2013, pages 3748–3754. IEEE, 2013

- Odometry method that minimizes photometric cost using depth measurements
- Improved weighting function for robustness in the presence of outliers

Voxel Hashing

M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger. Real-time 3d reconstruction at scale using voxel hashing.

ACM Trans. Graph., 32(6):169:1-169:11, 2013

- Uses hashing to store TSDF grid efficiently
- Used within many state-of-the-art voxel-based reconstruction methods

Octree Mapping

F. Steinbrücker, J. Sturm, and D. Cremers. Volumetric 3d mapping in real-time on a CPU.

In 2014 IEEE International Conference on Robotics and Automation, ICRA 2014, Hong Kong, China, May 31 - June 7, 2014, pages 2021–2028. IEEE, 2014

- Uses Octree to store TSDF grid efficiently
- · Can run in real-time without GPU

BAD SLAM

T. Schöps, T. Sattler, and M. Pollefeys. BAD SLAM: bundle adjusted direct RGB-D SLAM.

In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 134–144. Computer Vision Foundation / IEEE, 2019

- Published on CVPR 2019
- Perform bundle adjustment on surfels to get a high quality pose

Outline

- General Information
 - $\circ~$ About the Seminar
 - Registration
- Possible Papers
 - Depth and RGB-D Sensors
 - Monocular Cameras
- Questions

PTAM

G. Klein and D. W. Murray. Parallel tracking and mapping for small AR workspaces.

In Sixth IEEE/ACM International Symposium on Mixed and Augmented Reality, ISMAR 2007, 13-16 November 2007, Nara, Japan, pages 225–234. IEEE Computer Society, 2007

- One of the first systems capable of estimating both pose and geometry in real-time for handheld cameras
- Simple AR applications

ПП

DTAM

R. A. Newcombe, S. Lovegrove, and A. J. Davison. DTAM: dense tracking and mapping in real-time.

In D. N. Metaxas, L. Quan, A. Sanfeliu, and L. V. Gool, editors, *IEEE International Conference on Computer Vision, ICCV 2011, Barcelona, Spain, November 6-13, 2011*, pages 2320–2327. IEEE Computer Society, 2011

• One of the first monocular systems to create dense 3D models

ORB-SLAM

R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. ORB-SLAM: a versatile and accurate monocular SLAM system.

CoRR, abs/1502.00956, 2015

• Use all depth and color data to obtain consistent mapping

ПП

DSO

J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry.

IEEE Trans. Pattern Anal. Mach. Intell., 40(3):611–625, 2018

- Large-scale odometry
- Does not rely on keypoint detections

GN-Net

L. von Stumberg, P. Wenzel, Q. Khan, and D. Cremers. Gn-net: The gauss-newton loss for multi-weather relocalization.

IEEE Robotics Autom. Lett., 5(2):890-897, 2020

- Use feature-metric Bundle Adjustment for multi-weather relocalization
- Propose the Gauss-Newton loss to train NNs which generate feature maps that are suitable for direct image alignment

ПП

D3VO

N. Yang, L. von Stumberg, R. Wang, and D. Cremers. D3VO: deep depth, deep pose and deep uncertainty for monocular visual odometry.

In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 1278–1289. IEEE, 2020

- Monocular visual odometry framework that uses deep-learning on three levels: deep depth, pose and uncertainty estimation
- Shows impressive performance improvements in comparison to traditional methods (DSO, ORB)

Questions?

Reminder:

- Web page: https://vision.in.tum.de/teaching/ss2021/seminar_realtime3d
- Password: ss21-realtime3d
- Contact: realtime3d-ss21@vision.in.tum.de

References I

E. Bylow, J. Sturm, C. Kerl, F. Kahl, and D. Cremers.

Real-time camera tracking and 3d reconstruction using signed distance functions. In P. Newman, D. Fox, and D. Hsu, editors, *Robotics: Science and Systems IX, Technische Universität Berlin, Berlin, Germany, June 24 - June 28, 2013*, 2013.

J. Engel, V. Koltun, and D. Cremers.

Direct sparse odometry.

IEEE Trans. Pattern Anal. Mach. Intell., 40(3):611–625, 2018.

C. Kerl, J. Sturm, and D. Cremers.

Robust odometry estimation for RGB-D cameras.

In 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, May 6-10, 2013, pages 3748–3754. IEEE, 2013.

G. Klein and D. W. Murray.

Parallel tracking and mapping for small AR workspaces.

In Sixth IEEE/ACM International Symposium on Mixed and Augmented Reality, ISMAR 2007, 13-16 November 2007, Nara, Japan, pages 225–234. IEEE Computer Society, 2007.

References II

R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós.

ORB-SLAM: a versatile and accurate monocular SLAM system.

CoRR, abs/1502.00956, 2015.

R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohli, J. Shotton,
 S. Hodges, and A. W. Fitzgibbon.

Kinectfusion: Real-time dense surface mapping and tracking.

In 10th IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2011, Basel, Switzerland, October 26-29, 2011, pages 127–136. IEEE Computer Society, 2011.

- R. A. Newcombe, S. Lovegrove, and A. J. Davison.
 - DTAM: dense tracking and mapping in real-time.

In D. N. Metaxas, L. Quan, A. Sanfeliu, and L. V. Gool, editors, *IEEE International Conference on Computer Vision, ICCV 2011, Barcelona, Spain, November 6-13, 2011*, pages 2320–2327. IEEE Computer Society, 2011.

M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger.
 Real-time 3d reconstruction at scale using voxel hashing.
 ACM Trans. Graph., 32(6):169:1–169:11, 2013.

ПΠ

References III

T. Schöps, T. Sattler, and M. Pollefeys.

BAD SLAM: bundle adjusted direct RGB-D SLAM.

In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 134–144. Computer Vision Foundation / IEEE, 2019.

F. Steinbrücker, J. Sturm, and D. Cremers.

Volumetric 3d mapping in real-time on a CPU.

In 2014 IEEE International Conference on Robotics and Automation, ICRA 2014, Hong Kong, China, May 31 - June 7, 2014, pages 2021–2028. IEEE, 2014.

- L. von Stumberg, P. Wenzel, Q. Khan, and D. Cremers.
 Gn-net: The gauss-newton loss for multi-weather relocalization.
 IEEE Robotics Autom. Lett., 5(2):890–897, 2020.
- N. Yang, L. von Stumberg, R. Wang, and D. Cremers.

D3VO: deep depth, deep pose and deep uncertainty for monocular visual odometry.
In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 1278–1289. IEEE, 2020.