

Multiple View Geometry: Exercise Sheet 6

Prof. Dr. Daniel Cremers, Simon Weber, Tarun Yenamandra
Computer Vision Group, TU Munich
Wednesdays 16:00-18:15 at Hörsaal 2, "Interims I" (5620.01.102), and on RBG Live

Exercise: June 22nd, 2022

Part I: Theory

1. The non-zero essential matrix $E=\hat{T} R$ with $T \in \mathbb{R}^{3}$ and $R \in \mathrm{SO}(3)$ has the singular value decomposition $E=U \Sigma V^{T}$. Let $R_{Z}\left(\pm \frac{\pi}{2}\right)$ be the rotation by $\pm \frac{\pi}{2}$ around the z-axis.

According to the lecture (Chapter 5, Slide 9), there exist exactly two options for (\hat{T}, R) :

$$
\begin{array}{ll}
\left(\hat{T}_{1}, R_{1}\right)=\left(U R_{Z}\left(+\frac{\pi}{2}\right) \Sigma U^{\top},\right. & \left.U R_{Z}\left(+\frac{\pi}{2}\right)^{\top} V^{\top}\right) \\
\left(\hat{T}_{2}, R_{2}\right)=\left(U R_{Z}\left(-\frac{\pi}{2}\right) \Sigma U^{\top},\right. & \left.U R_{Z}\left(-\frac{\pi}{2}\right)^{\top} V^{\top}\right) \tag{2}
\end{array}
$$

Show that by using (1) and (2), the following properties hold:
(a) $\hat{T}_{1}, \hat{T}_{2} \in \operatorname{so}(3) \quad$ (i.e. \hat{T}_{1}, \hat{T}_{2} are skew-symmetric matrices)
(b) $R_{1}, R_{2} \in \mathrm{SO}(3) \quad$ (i.e. R_{1}, R_{2} are rotation matrices)
2. Consider the matrices $E=\hat{T} R$ and $H=R+T u^{\top}$ with $R \in \mathbb{R}^{3 \times 3}$ and $T, u \in \mathbb{R}^{3}$. Show that the following holds:
(a) $E=\hat{T} H$
(b) $H^{\top} E+E^{\top} H=0$
3. Let $F \in \mathbb{R}^{3 \times 3}$ be the fundamental matrix for the cameras C_{1} and C_{2}. Show that the following holds for the epipoles e_{1} and e_{2} :

$$
F e_{1}=0 \quad \text { and } \quad e_{2}^{\top} F=0
$$

Part II: Practical Exercises

1. Download the package ex06.zip from the website and extract the images batinria0.tif and batinrial.tif.
2. Get the 2D coordinates of corresponding point pairs: Show the first image and mark at least 8 points. You can retrieve the pixel coordinates of mouse clicks with the command $[x, y]$ $=$ ginput ($g \subset f$). Then show the second image and click at the corresponding points in the same order. Again you can get the pixel coordinates with ginput. Now you should have the 2 D coordinates of corresponding point pairs.
3. Implement the 8-point algorithm from the lecture and run it with these point pairs. To this end, you have to transform the coordinates. The intrinsic camera matrices are:

$$
\begin{aligned}
& K 1=\left(\begin{array}{ccc}
844.310547 & 0 & 243.413315 \\
0 & 1202.508301 & 281.529236 \\
0 & 0 & 1
\end{array}\right) \\
& K 2=\left(\begin{array}{ccc}
852.721008 & 0 & 252.021805 \\
0 & 1215.657349 & 288.587189 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

4. Reconstruct the depths of the points as described in Chapter 5 on Slides 17 and 18.
5. Visualize 3D points and cameras to check whether the results are plausible. You may find the function plotCamera useful.

Hints:

- The file additional_information.txt provides $K 1$ and $K 2$
- Use kron and reshape
- If U or V of the SVD of E have a negative determinant, multiply them by -1 , respectively, such that both have a positive determinant.

