

Computer Vision Group

Computer Vision II: Multiple View Geometry (IN2228)

Chapter 01 Mathematical Background

Dr. Haoang Li

20 April 2023 11:00-11:45

Announcements before Class

🕨 Exam

The exam dates and locations are determined centrally by the Department of Studies. It will take a while until the dates are visible to us. We will provide any update in time.

Registration

If you need us to register you in Moodle, please send me an email with your name and TUM ID.

Slides

I will upload slides before each class to both course website and Moodle. The slides will be slightly updated from time to time.

TEChnische Universität Munchen

Today's Outline

- Vector Operations
- Vector Space
- Matrices and Transformation
- Matrix Properties
- Matrix Decomposition

Dot Product

Definition

$$\mathbf{a} \cdot \mathbf{b} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

Geometric illustration

 $\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$

$$\cos \pi = -1$$
 $\cos \frac{\pi}{2} = 0$ $\cos 0 = 1$

The dot product measures how similar two normalized vectors are.

TEChnische Universität Munchen

Vector Operations

Dot Product

Geometric illustration

The projection of **b** onto **a**

Cross Product

$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \times \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$

An alternative way to remember the definition using the **determinant** of a matrix

$$\mathbf{i} = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \qquad \mathbf{j} = \begin{bmatrix} 0\\1\\0 \end{bmatrix} \qquad \mathbf{k} = \begin{bmatrix} 0\\0\\1 \end{bmatrix} \qquad \mathbf{k} = \begin{bmatrix} 0\\0\\1 \end{bmatrix} \qquad \mathbf{a} \times \mathbf{b} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & \mathbf{j} & \mathbf{k} \\ a_1 & \mathbf{j} & \mathbf{k} \\ a_2 & \mathbf{j} & \mathbf{k} \\ b_2 & \mathbf{j} & \mathbf{k} \end{bmatrix} = (a_2b_3 - a_3b_2)\mathbf{i} + (-1)(a_1b_3 - a_3b_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$$

$$= \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$
diagonal

04/40

Cross Product

Geometric illustration

 $\mathbf{a}\times\mathbf{b}$ is a vector that is orthogonal to both \mathbf{a} and $\mathbf{b}.$

Direction is determined by the right hand rule.

- ✓ Make your fingers sweep from one vector to the other
- ✓ The cross product direction is where your thumb points

Cross Product

Geometric illustration

$$\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$$

Area of parallelogram spanned by **a** and **b**.

Technische Universität Munchen

Vector Operations

Triple Product

Geometric illustration

$$V = \|\mathbf{a} \times \mathbf{b}\| \frac{\|\operatorname{proj}_{\mathbf{a} \times \mathbf{b}} \mathbf{c}\|}{\|\mathbf{a} \times \mathbf{b}\|} \frac{\operatorname{Absolute} \text{ value for positive result}}{\|\underline{\mathbf{a}} \times \mathbf{b}\|} = |(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}|$$

(introduced in dot product)

Volume of the parallelepiped spanned by vectors **a**, **b**, and **c**.

Kronecker Product

Definition

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}\mathbf{B} & \cdots & a_{1n}\mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{m1}\mathbf{B} & \cdots & a_{mn}\mathbf{B} \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \otimes \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 1 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} & 2 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} \\ 3 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} & 4 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} \end{bmatrix}$$

An example

Vector Space and Basis

Definition

A set **B** of vectors in a vector space **V** is called a **basis** if *every* element of **V** may be written in a unique way as a **finite linear combination** of elements of **B**.

$$B = \{\mathbf{v}_1, \dots, \mathbf{v}_m\}$$

 $\mathbf{v} = a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n$

The same vector can be represented in two **different bases** (purple and red arrows).

Vector Space and Basis

Linear Span

Let S be a linear space. Let $x_1, ..., x_n \in S$ be n vectors. The linear span of $x_1, ..., x_n$, denoted by $pan(x_1, ..., x_n)$ contains all the linear combinations A vector set $x = \alpha_1 x_1 + ... + \alpha_n x_n$

where $\alpha_1, \ldots, \alpha_n$ are arbitrary scalars.

Vector Space and Basis

An Example

$$x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad x_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \quad x_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Does x_3 belong to the linear span of x_1 and x_2 ?

All the linear combinations

$$s = \alpha_1 x_1 + \alpha_2 x_2$$
$$= \alpha_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
$$= \begin{bmatrix} \alpha_1 + 2\alpha_2 \\ \alpha_1 + 2\alpha_2 \end{bmatrix}$$
$$= (\alpha_1 + 2\alpha_2) \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

span(x₁,x₂) contains [1, 1]', [2, 2]', [1.5, 1.5]' ...

 x_3 does not belong to it.

Linear Independence

Definition

A set of vectors {v1,v2,...,vk} is linearly independent if the vector equation

$$x_1v_1 + x_2v_2 + \dots + x_kv_k = 0$$

has only the trivial solution $x_1 = x_2 = \cdots = x_k = 0$.

Linearly independent vectors

Linearly dependent vectors in a plane

Linear Independence

An example

Gram–Schmidt Process

Definition

The Gram–Schmidt process is a method for ortho-normalizing a set of vectors.

The first two steps of the Gram–Schmidt process

Technische Universität Munchen

Vector Space

Gram–Schmidt Process

Definition

We define the projection operator

$$ext{proj}_{\mathbf{u}}(\mathbf{v}) = rac{\langle \mathbf{v}, \mathbf{u}
angle}{\langle \mathbf{u}, \mathbf{u}
angle} \mathbf{u}$$

The Gram–Schmidt process then works as follows:

$$\begin{split} \mathbf{u}_{1} &= \mathbf{v}_{1}, \\ \mathbf{u}_{2} &= \mathbf{v}_{2} - \operatorname{proj}_{\mathbf{u}_{1}}(\mathbf{v}_{2}), \\ \mathbf{u}_{3} &= \mathbf{v}_{3} - \operatorname{proj}_{\mathbf{u}_{1}}(\mathbf{v}_{3}) - \operatorname{proj}_{\mathbf{u}_{2}}(\mathbf{v}_{3}), \\ \mathbf{u}_{4} &= \mathbf{v}_{4} - \operatorname{proj}_{\mathbf{u}_{1}}(\mathbf{v}_{4}) - \operatorname{proj}_{\mathbf{u}_{2}}(\mathbf{v}_{4}) - \operatorname{proj}_{\mathbf{u}_{3}}(\mathbf{v}_{4}), \\ &\vdots \\ \mathbf{u}_{k} &= \mathbf{v}_{k} - \sum_{j=1}^{k-1} \operatorname{proj}_{\mathbf{u}_{j}}(\mathbf{v}_{k}), \end{split}$$

15/40

Matrices and Transformation

> Overview

Overview

Matrices and Transformation

> Overview

Euclidian transformation and Similarity transformation

Matrices and Transformation

> Overview

Linear transformation and Affine transformation

> Transpose

Definition

Formally, the *i*-th row, *j*-th column element of \mathbf{A}^{T} is the *j*-th row, *i*-th column element of \mathbf{A} :

$$\left[\mathbf{A}^{\mathrm{T}}
ight]_{ij}=\left[\mathbf{A}
ight]_{ji}$$

Example

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$

Rank

Definition

The rank of a matrix **A** is the dimension of the vector space spanned by its columns/rows. It corresponds to the **maximal number of linearly independent** columns of **A**.

$$\begin{array}{ccc} A \\ \begin{bmatrix} 1 & 2 & 1 \\ 4 & 5 & 6 \\ 6 & 9 & 8 \end{bmatrix} & \begin{array}{c} a_1 = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \\ a_2 = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix} \\ a_3 = \begin{bmatrix} 6 & 9 & 8 \end{bmatrix} & \begin{array}{c} 2a_1 + a_2 = a_3 \\ \end{array}$$

For matrix A, rank is 2 (row vector a1 and a2 are linearly independent).

Trace

Definition

The trace of an n imes n square matrix **A** is defined as

$$\mathrm{tr}(\mathbf{A})=\sum_{i=1}^n a_{ii}=a_{11}+a_{22}+\cdots+a_{nn}$$

where a_{ii} denotes the entry on the *i*th row and *i*th column of **A**.

An example

$$A = \begin{bmatrix} 2 & 1 & 5 \\ 2 & 3 & 4 \\ 0 & 1 & 0 \end{bmatrix} \quad \begin{aligned} \operatorname{tr}(A) &= A_{11} + A_{22} + A_{33} \\ &= 2 + 3 + 0 \\ &= 5 \end{aligned}$$

Ø

Matrix Properties

Determinant \triangleright

Definition

A scalar value that is a function of the entries of a square matrix

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = aei + bfg + cdh - ceg - bdi - afh$$

> Determinant

Geometric meaning

3D case: The volume of this parallelepiped is the absolute value of the determinant of the matrix.

2D case: The area of the parallelogram is the absolute value of the determinant of the matrix.

Determinant

Applications

A homogeneous system of linear equations has a unique solution (the **trivial**, **i.e.**, **zero solution**) if and only if its **determinant is non-zero**.

If this determinant is zero, then the system has an infinite number of solutions (non-zero solutions). x-y=0

Kernel or Null Space

A denotes a matrix. Kernel of A is a set of vectors {x} satisfying

$$\mathrm{N}(A) = \mathrm{Null}(A) = \ker(A) = \{\mathbf{x} \in K^n \mid A\mathbf{x} = \mathbf{0}\}.$$

Null space is non-empty because it clearly contains the zero vector: $\mathbf{x} = \mathbf{0}$ always satisfies $A\mathbf{x}=\mathbf{0}$. However, we are interested in non-trivial solution in practice.

The kernel of **A** is the same as the solution set to the above homogeneous equations.

Skew-symmetric Matrix

Definitions

$$\mathbf{a} = \begin{pmatrix} a_1 \ a_2 \ a_3 \end{pmatrix}^{\mathsf{T}}$$
 $[\mathbf{a}]_{ imes} = egin{bmatrix} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{bmatrix}$ Non-diagonal elements

Application to cross product

$$\mathbf{b} = (b_1 \ b_2 \ b_3)^{\mathsf{T}} \qquad \mathbf{a} imes \mathbf{b} = [\mathbf{a}]_{ imes} \mathbf{b} = egin{bmatrix} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{bmatrix} egin{bmatrix} b_1 \ b_2 \ b_3 \end{bmatrix} = egin{bmatrix} a_2 b_3 - a_3 b_2 \ a_3 b_1 - a_1 b_3 \ a_1 b_2 - a_2 b_1 \end{bmatrix}$$

Eigenvalues and Eigenvectors

Computation

Definition

$(A - \lambda)$	$(I) \mathbf{v}$	= 0
-----------------	------------------	------------

Equation has a **nonzero solution v** if and only if the determinant of the coefficient matrix is zero (vectors are linear dependent).

$$|A-\lambda I|=0$$
 characteristic polynomial

Eigenvalues and Eigenvectors

Geometric Illustration

- Eigenvector: changes at most by a scalar factor
- Eigenvalue: the factor by which the eigenvector is scaled.

Matrix A acts by stretching the vector x, not changing its direction, so x is an eigenvector of A.

Eigenvalues and Eigenvectors

Geometric Illustration

An example of a 2×2 symmetric matrix. The **eigenvectors** are the two special directions such that every point on them will just **slide** on them.

Eigenvalues and Eigenvectors

Application to Inverse of Matrix

- ✓ Definition of Invertible matrix An n-by-n square matrix A is called invertible, if there exists an n-by-n square matrix B such that $AB = BA = I_n$
- ✓ If matrix A can be eigen-decomposed, and if none of its eigenvalues are zero, then A is invertible. The inverse of matrix is given by

$$\mathbf{A}^{-1} = \mathbf{Q} \mathbf{\Lambda}^{-1} \mathbf{Q}^{-1}$$

where **Q** is the square (N \times N) matrix whose i-th column is the eigenvector of **A**, and **A** is the diagonal matrix whose diagonal elements are the corresponding eigenvalues.

Singular Value Decomposition (SVD)

Definition

$$oldsymbol{A}_{m imes n} = oldsymbol{U}_{m imes m} oldsymbol{\Sigma}_{m imes n} oldsymbol{V}_{n imes n}^T = oldsymbol{U}_{m imes m} oldsymbol{O} oldsymbol{O}_{m imes n} oldsymbol{V}_{n imes n}^T$$
 $oldsymbol{D}_{r imes r} = egin{pmatrix} \sqrt{\lambda_1} & & & \ & \sqrt{\lambda_2} & & \ & & \ddots & \ & & \sqrt{\lambda_r} \end{pmatrix}_{r imes r} \quad \lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_r > 0 ext{ are the eigen values of } oldsymbol{A}^T oldsymbol{A}$

What is the geometric meaning of SVD?

Singular Value Decomposition (SVD)

Geometric meaning

A 2*2 matrix represents a linear map T: $R^2 \rightarrow R^2$

 $T=\left(egin{array}{cc} 6&2\-7&6\end{array}
ight)$

 $T [e_1, e_2] = [b_1 b_2]$

The basis (e_1, e_2) is orthogonal, but the transformed basis (b_1, b_2) is non-orthogonal.

Singular Value Decomposition (SVD)

Geometric meaning

How to find an orthogonal basis that **stay orthogonal** after transformation?

$$T = \begin{pmatrix} 6 & 2 \\ -7 & 6 \end{pmatrix} \qquad \mathsf{T} = \mathsf{U} \, \mathsf{\Sigma} \, \mathsf{V}^{-1}$$

$$\begin{pmatrix} 6 & 2 \\ -7 & 6 \end{pmatrix} \approx \begin{pmatrix} -0.45 & 0.89 \\ 0.89 & 0.45 \end{pmatrix} \begin{pmatrix} 10 & 0 \\ 0 & 5 \end{pmatrix} \underbrace{\begin{pmatrix} -0.89 & 0.45 \\ 0.45 & 0.89 \end{pmatrix}}$$
Transformed basis Original basis

Singular Value Decomposition (SVD)

35/40

Matrix Decomposition

Singular Value Decomposition (SVD)

Mapping points on a circle into points on an ellipse

Singular Value Decomposition (SVD)

Application to the Generalized Inverse

- For a certain quadratic matrix **A** one can define an inverse matrix, if det(**A**) does not equal 0.
- One can also define a generalized inverse (also called pseudo inverse) for an arbitrary (non-quadratic) matrix $A \in \mathbb{R}^{m \times n}$

$$\mathcal{A}^{\dagger} = \mathcal{V} \Sigma^{\dagger} \mathcal{U}^{\top}, ext{ where } \Sigma^{\dagger} = \left(egin{array}{cc} \Sigma_1^{-1} & 0 \ 0 & 0 \end{array}
ight)_{n imes m},$$

where \sum_{1} is the diagonal matrix of non-zero singular values.

QR Decomposition

Definition

QR decomposition is a decomposition of a matrix **A** into a product $\mathbf{A} = \mathbf{QR}$ of an orthonormal matrix **Q** and an upper triangular matrix **R**.

✓ **Q** is an orthogonal matrix means that its columns are orthogonal unit vectors satisfying

$$Q^{\mathsf{T}} = Q^{-1}$$

✓ **R** is an upper triangular matrix having the form: $\begin{bmatrix} u_{1,1} & u_{1,2} & u_{1,3} & \cdots & u_1 \end{bmatrix}$

QR Decomposition

Computation

We first apply Gram–Schmidt process to $A = [\mathbf{a}_1 \quad \cdots \quad \mathbf{a}_n]$

QR Decomposition

Computation

We can now express \mathbf{a}_i over the newly computed orthonormal basis $\{\mathbf{e}_i\}$:

$Q = [\mathbf{e}_1$	•••	$\mathbf{e}_n]$
---------------------	-----	-----------------

Summary

- Vector Operations
- Vector Space
- Matrices and Transformation
- Matrix Properties
- Matrix Decomposition

Thank you for your listening! If you have any questions, please come to me :-)