Computer Vision II: Multiple View Geometry (IN2228)

Chapter 01 Mathematical Background

Dr. Haoang Li

20 April 2023 11:00-11:45

Announcements before Class

> Exam
The exam dates and locations are determined centrally by the Department of Studies. It will take a while until the dates are visible to us. We will provide any update in time.

> Registration

If you need us to register you in Moodle, please send me an email with your name and TUM ID.

> Slides

I will upload slides before each class to both course website and Moodle. The slides will be slightly updated from time to time.

Today's Outline

> Vector Operations
> Vector Space
> Matrices and Transformation
> Matrix Properties
> Matrix Decomposition

Vector Operations

$>$ Dot Product

Definition

$$
\mathbf{a} \cdot \mathbf{b}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}
$$

Geometric illustration

$$
\cos \pi=-1
$$

$$
\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta
$$

$$
\cos \frac{\pi}{2}=0
$$

$$
\underbrace{}_{a}
$$

$\cos 0=1$
$\xrightarrow[\mathrm{a}]{\stackrel{\mathrm{b}}{\longrightarrow}}$ Normalized vectors

The dot product measures how similar two normalized vectors are.

Vector Operations

$>$ Dot Product

Geometric illustration

The projection of \mathbf{b} onto \mathbf{a}

$$
\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|} \frac{\mathbf{a}}{\|\mathbf{a}\|}
$$

Vector Operations

> Cross Product

Definition

$$
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \times\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right]
$$

An alternative way to remember the definition using the determinant of a matrix

$$
\begin{aligned}
& \mathbf{i}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
& \mathbf{j}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
& \mathbf{k}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

Vector Operations

$>$ Cross Product

Geometric illustration

$\mathbf{a} \times \mathbf{b}$ is a vector that is orthogonal to both \mathbf{a} and \mathbf{b}.

Vector Operations

> Cross Product

Geometric illustration

$$
\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta
$$

Area of parallelogram spanned by \mathbf{a} and \mathbf{b}.

Vector Operations

> Triple Product

Geometric illustration

$$
\begin{aligned}
& V=\|\mathbf{a} \times \mathbf{b}\| \| \frac{\left\|\operatorname{proj}_{\underline{\mathbf{a} \times \mathbf{b}}} \mathbf{c}\right\|}{} \quad \begin{array}{l}
\text { Absolute value for } \\
\text { positive result }
\end{array} \\
&=\|\mathbf{a} \times \mathbf{b}\| \| \frac{\mid(\mathbf{(\mathbf { a } \times \mathbf { b }}) \cdot \mathbf{c} \|}{\|\underline{\mathbf{a} \times \mathbf{b}}\|}=|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}|
\end{aligned}
$$

Volume of the parallelepiped spanned by vectors \mathbf{a}, \mathbf{b}, and \mathbf{c}.

Vector Operations

> Kronecker Product

Definition

$$
\begin{array}{r}
\mathbf{A} \otimes \mathbf{B}=\left[\begin{array}{ccc}
a_{11} \mathbf{B} & \cdots & a_{1 n} \mathbf{B} \\
\vdots & \ddots & \vdots \\
a_{m 1} \mathbf{B} & \cdots & a_{m n} \mathbf{B}
\end{array}\right] \quad\left[\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}\right] \otimes\left[\begin{array}{ll}
0 & 5 \\
6 & 7
\end{array}\right]=\left[\begin{array}{c}
1\left[\begin{array}{ll}
0 & 5 \\
6 & 7
\end{array}\right]
\end{array} \begin{array}{c}
2\left[\begin{array}{ll}
0 & 5 \\
6 & 7
\end{array}\right] \\
3\left[\begin{array}{ll}
0 & 5 \\
6 & 7
\end{array}\right]
\end{array} \begin{array}{l}
4\left[\begin{array}{ll}
0 & 5 \\
6 & 7
\end{array}\right]
\end{array}\right] \\
\text { An example }
\end{array}
$$

Vector Space

> Vector Space and Basis

Definition

A set \boldsymbol{B} of vectors in a vector space \boldsymbol{V} is called a basis if every element of \boldsymbol{V} may be written in a unique way as a finite linear combination of elements of B.

$$
\begin{aligned}
& B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\} \\
& \mathbf{v}=a_{1} \mathbf{v}_{1}+\cdots+a_{n} \mathbf{v}_{n}
\end{aligned}
$$

The same vector can be represented in two different bases (purple and red arrows).

Vector Space

> Vector Space and Basis

Linear Span

Let S be a linear space. Let $x_{1}, \ldots, x_{n} \in S$ be n vectors. The linear span of $x_{1}, \ldots, x_{n_{1}}$, denoted by $\operatorname{span}\left(x_{1}, \ldots, x_{n}\right)$ contains all the linear combinations

A vector set

$$
x=\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}
$$

where $\alpha_{1}, \ldots, \alpha_{n}$ are arbitrary scalars.

Vector Space

> Vector Space and Basis

An Example

$$
x_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad x_{2}=\left[\begin{array}{l}
2 \\
2
\end{array}\right] \quad x_{3}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \text { Does } x_{3} \text { belong to the linear span of } x_{1} \text { and } x_{2} ?
$$

All the linear combinations

$$
\begin{array}{ll}
=\alpha_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\alpha_{2}\left[\begin{array}{l}
2 \\
2
\end{array}\right] & \begin{array}{l}
\operatorname{span}\left(x_{1}, x_{2}\right) \\
\text { contains }[1,1]^{\prime},[2,2]^{\prime},[1.5,1.5]^{\prime} \ldots \\
=\left[\begin{array}{l}
\alpha_{1}+2 \alpha_{2} \\
\alpha_{1}+2 \alpha_{2}
\end{array}\right]
\end{array} \quad \begin{array}{l}
x_{3} \\
=\left(\alpha_{1}+2 \alpha_{2}\right)\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{array} \quad \begin{array}{l}
\text { does not belong to it. }
\end{array}
\end{array}
$$

Vector Space

> Linear Independence

Definition

A set of vectors $\{\mathrm{v} 1, \mathrm{v} 2, \ldots, \mathrm{vk}\}$ is linearly independent if the vector equation

$$
x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{k} v_{k}=0
$$

has only the trivial solution $x_{1}=x_{2}=\cdots=x_{k}=0$.

Linearly dependent vectors in a plane

Vector Space

> Linear Independence

An example

independent

$$
\underbrace{\overbrace{0}^{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
2 \\
-2
\end{array}\right],\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]},\left[\begin{array}{l}
4 \\
2 \\
3
\end{array}\right]}_{\text {dependent }}
$$

$$
9 *\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+5^{*}\left[\begin{array}{c}
0 \\
2 \\
-2
\end{array}\right]+4^{*}\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
2 \\
3
\end{array}\right]
$$

Vector Space

> Gram-Schmidt Process

Definition

The Gram-Schmidt process is a method for ortho-normalizing a set of vectors.

An example in 3D space

The first two steps of the Gram-Schmidt process

Vector Space

> Gram-Schmidt Process

Definition

We define the projection operator

$$
\operatorname{proj}_{\mathbf{u}}(\mathbf{v})=\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\langle\mathbf{u}, \mathbf{u}\rangle} \mathbf{u}
$$

The Gram-Schmidt process then works as follows:

$$
\begin{aligned}
\mathbf{u}_{2} & =\mathbf{v}_{2}-\operatorname{prof}_{\mathbf{u}_{1}}\left(\mathbf{v}_{2}\right) \\
\mathbf{u}_{3} & =\mathbf{v}_{3}-\operatorname{proj}_{\mathbf{u}_{1}}\left(\mathbf{v}_{3}\right)-\operatorname{proj}_{\mathbf{u}_{2}}\left(\mathbf{v}_{3}\right), \\
\mathbf{u}_{4} & =\mathbf{v}_{4}-\operatorname{proj}_{\mathbf{u}_{1}}\left(\mathbf{v}_{4}\right)-\operatorname{proj}_{\mathbf{u}_{2}}\left(\mathbf{v}_{4}\right)-\operatorname{proj}_{\mathbf{u}_{3}}\left(\mathbf{v}_{4}\right), \\
& \vdots \\
\mathbf{u}_{k} & =\mathbf{v}_{k}-\sum_{j=1}^{k-1} \operatorname{proj}_{\mathbf{u}_{j}}\left(\mathbf{v}_{k}\right),
\end{aligned}
$$

Matrices and Transformation

> Overview

Overview

Matrices and Transformation

> Overview

Euclidian transformation and Similarity transformation

Identity

Matrices and Transformation

> Overview

Linear transformation and Affine transformation

Linear: Origin remains unchanged
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

Affine $=$ Linear + Translation

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Matrix Properties

> Transpose

Definition

Formally, the i-th row, j-th column element of \mathbf{A}^{\top} is the j-th row, i-th column element of \mathbf{A} :

$$
\left[\mathbf{A}^{\mathrm{T}}\right]_{i j}=[\mathbf{A}]_{j i}
$$

Example

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{lll}
{\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]}
\end{array}\right.
$$

Matrix Properties

> Rank

Definition

The rank of a matrix \mathbf{A} is the dimension of the vector space spanned by its columns/rows. It corresponds to the maximal number of linearly independent columns of \mathbf{A}.

$$
\left[\begin{array}{ccc}
1 & 2 & 1 \\
4 & 5 & 6 \\
6 & 9 & 8
\end{array}\right] \quad \begin{aligned}
& a_{1}=\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right] \\
& a_{2}=\left[\begin{array}{lll}
4 & 5 & 6
\end{array}\right] \\
& a_{3}=\left[\begin{array}{lll}
6 & 9 & 8
\end{array}\right]
\end{aligned} \quad 2 a_{1}+a_{2}=a_{3}
$$

For matrix \mathbf{A}, rank is 2 (row vector a1 and a2 are linearly independent).

Matrix Properties

$>$ Trace

Definition

The trace of an $n \times n$ square matrix \mathbf{A} is defined as

$$
\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} a_{i i}=a_{11}+a_{22}+\cdots+a_{n n}
$$

where $a_{i j}$ denotes the entry on the i th row and i th column of \mathbf{A}.
An example

$$
A=\left[\begin{array}{lll}
2 & 1 & 5 \\
2 & 3 & 4 \\
0 & 1 & 0
\end{array}\right] \quad \begin{array}{ll}
\operatorname{tr}(A) & =A_{11}+A_{22}+A_{33} \\
& =2+3+0 \\
& =5
\end{array}
$$

Matrix Properties

> Determinant

Definition

A scalar value that is a function of the entries of a square matrix

$$
\begin{aligned}
& \left|\begin{array}{ll}
a & b \\
c^{-} & d
\end{array}\right|=a d-b c \\
& \left|\begin{array}{ccc}
a & b & c \\
d & \ddots & f \\
g & h^{\prime} & -i
\end{array}\right|=a e i+b f g+c d h-c e g-b d i-a f h
\end{aligned}
$$

Matrix Properties

> Determinant

Geometric meaning

2D case: The area of the parallelogram is the absolute value of the determinant of the matrix.

3D case: The volume of this parallelepiped is the absolute value of the determinant of the matrix.

Matrix Properties

> Determinant

Applications

A homogeneous system of linear equations has a unique solution (the trivial, i.e., zero solution) if and only if its determinant is non-zero.

Independent $\left\{\begin{array}{c}2 x+y=0 \\ x-y=0\end{array}\right.$

$$
\left|\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right|=2(-1)-1(1)=-3
$$

If this determinant is zero, then the system has an infinite number of solutions (non-zero solutions).

Matrix Properties

> Kernel or Null Space

A denotes a matrix. Kernel of \mathbf{A} is a set of vectors $\{\mathbf{x}\}$ satisfying

$$
\mathrm{N}(A)=\operatorname{Null}(A)=\operatorname{ker}(A)=\left\{\mathbf{x} \in K^{n} \mid A \mathbf{x}=\mathbf{0}\right\} .
$$

Null space is non-empty because it clearly contains the zero vector: $\mathbf{x}=\mathbf{0}$ always satisfies $\mathbf{A x}=\mathbf{0}$. However, we are interested in non-trivial solution in practice.

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0 \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=0 \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=0
\end{aligned}
$$

The kernel of \mathbf{A} is the same as the solution set to the above homogeneous equations.

Matrix Properties

> Skew-symmetric Matrix

Definitions

$$
\mathbf{a}=\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right)^{\top} \quad[\mathbf{a}]_{\times}=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right] \quad \text { Non-diagonal elements }
$$

Application to cross product

$$
\mathbf{b}=\left(b_{1} b_{2} b_{3}\right)^{\top} \quad \mathbf{a} \times \mathbf{b}=[\mathbf{a}]_{\times} \mathbf{b}=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right]
$$

Matrix Properties

> Eigenvalues and Eigenvectors

Definition

Computation

$$
(A-\lambda I) \mathbf{v}=\mathbf{0}
$$

Equation has a nonzero solution \mathbf{v} if and only if the determinant of the coefficient matrix is zero (vectors are linear dependent).

$$
|A-\lambda I|=0 \quad \text { characteristic polynomial }
$$

Matrix Properties

> Eigenvalues and Eigenvectors

Geometric Illustration

- Eigenvector: changes at most by a scalar factor
- Eigenvalue: the factor by which the eigenvector is scaled.

Find "invariance" from variable observations

Matrix \mathbf{A} acts by stretching the vector \mathbf{x}, not changing its direction, so \mathbf{x} is an eigenvector of \mathbf{A}.

Matrix Properties

> Eigenvalues and Eigenvectors

Geometric Illustration

An example of a 2×2 symmetric matrix. The eigenvectors are the two special directions such that every point on them will just slide on them.

Matrix Properties

> Eigenvalues and Eigenvectors

Application to Inverse of Matrix

\checkmark Definition of Invertible matrix
An n-by-n square matrix A is called invertible, if there exists an n-by- n square matrix B such that $\mathbf{A B}=\mathbf{B A}=\mathbf{I}_{n}$
\checkmark If matrix \mathbf{A} can be eigen-decomposed, and if none of its eigenvalues are zero, then \mathbf{A} is invertible. The inverse of matrix is given by

$$
\mathbf{A}^{-1}=\mathbf{Q} \mathbf{\Lambda}^{-1} \mathbf{Q}^{-1}
$$

where \mathbf{Q} is the square ($N \times N$) matrix whose i-th column is the eigenvector of \mathbf{A}, and $\boldsymbol{\Lambda}$ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues.

Matrix Decomposition

> Singular Value Decomposition (SVD)

Definition

$$
\begin{gathered}
\boldsymbol{A}_{m \times n}=\boldsymbol{U}_{m \times m} \boldsymbol{\Sigma}_{m \times n} \boldsymbol{V}_{n \times n}^{T}=\boldsymbol{U}_{m \times m}\left(\begin{array}{cc}
\boldsymbol{D}_{r \times r} & \boldsymbol{O} \\
\boldsymbol{O} & \boldsymbol{O}
\end{array}\right)_{m \times n} \boldsymbol{V}_{n \times n}^{T} \\
\boldsymbol{D}_{r \times r}=\left(\begin{array}{ccc}
\sqrt{\lambda_{1}} & & \\
& \sqrt{\lambda_{2}} & \\
& & \ddots \\
& & \\
& & \sqrt{\lambda_{r}}
\end{array}\right)_{r \times r} \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{r}>0 \text { are the eigen values of } \boldsymbol{A}^{T} \boldsymbol{A}
\end{gathered}
$$

What is the geometric meaning of SVD?

Matrix Decomposition

$>$ Singular Value Decomposition (SVD)

Geometric meaning

A 2*2 matrix represents a linear map $T: R^{2} \rightarrow R^{2}$

$$
T=\left(\begin{array}{cc}
6 & 2 \\
-7 & 6
\end{array}\right)
$$

$$
\mathbf{T}\left[e_{1}, e_{2}\right]=\left[b_{1} b_{2}\right]
$$

The basis $\left(e_{1}, e_{2}\right)$ is orthogonal, but the transformed basis $\left(b_{1} b_{2}\right)$ is non-orthogonal.

Matrix Decomposition

$>$ Singular Value Decomposition (SVD)

Geometric meaning

How to find an orthogonal basis that stay orthogonal after transformation?

$$
T=\left(\begin{array}{cc}
6 & 2 \\
-7 & 6
\end{array}\right) \quad \mathbf{T}=\mathrm{U} \Sigma \mathbf{V}^{-1}
$$

$$
\left(\begin{array}{cc}
6 & 2 \\
-7 & 6
\end{array}\right) \approx\left(\begin{array}{c:c}
-0.45 & 0.89 \\
0.89 & 0.45
\end{array}\right)\left(\begin{array}{cc}
10 & 0 \\
0 & 5
\end{array}\right)\left(\begin{array}{cc}
-0.89 & 0.45 \\
\hdashline 0.45 & 0.89
\end{array}\right)
$$

Transformed basis
Original basis

Matrix Decomposition

> Singular Value Decomposition (SVD)

$$
M\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right]\left[\begin{array}{c}
v_{1}^{\mathrm{T}} \\
v_{2}^{\mathrm{T}}
\end{array}\right]\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right]
$$

Matrix Decomposition

> Singular Value Decomposition (SVD)
Mapping points on a circle into points on an ellipse

$$
A=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
v_{1}^{\mathrm{T}} \\
v_{2}^{\mathrm{T}}
\end{array}\right]
$$

Point on circle

$\left.u_{2}\right]\left[\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{c}v_{1}^{\mathrm{T}} \\ v_{2}^{\mathrm{T}}\end{array}\right]\left[\begin{array}{ll}v_{1} & v_{2}\end{array}\right]\left[\begin{array}{l}\xi_{1} \\ \xi_{2}\end{array}\right]=3 \xi_{1} u_{1}+\xi_{2} u_{2}$

Matrix Decomposition

> Singular Value Decomposition (SVD)

Application to the Generalized Inverse

- For a certain quadratic matrix \boldsymbol{A} one can define an inverse matrix, if $\operatorname{det}(\boldsymbol{A})$ does not equal 0.
- One can also define a generalized inverse (also called pseudo inverse) for an arbitrary (non-quadratic) matrix $A \in \mathbb{R}^{m \times n}$

$$
A^{\dagger}=V \Sigma^{\dagger} U^{\top}, \text { where } \Sigma^{\dagger}=\left(\begin{array}{rr}
\Sigma_{1}^{-1} & 0 \\
0 & 0
\end{array}\right)_{n \times m}
$$

where Σ_{1} is the diagonal matrix of non-zero singular values.

Matrix Decomposition

> QR Decomposition

Definition

QR decomposition is a decomposition of a matrix \mathbf{A} into a product $\mathbf{A}=\mathbf{Q R}$ of an orthonormal matrix \mathbf{Q} and an upper triangular matrix \mathbf{R}.
$\checkmark \mathbf{Q}$ is an orthogonal matrix means that its columns are orthogonal unit vectors satisfying

$$
Q^{\top}=Q^{-1}
$$

$\checkmark \mathbf{R}$ is an upper triangular matrix having the form:
$\left[\begin{array}{ccccc}u_{1,1} & u_{1,2} & u_{1,3} & \cdots & u_{1, n} \\ & u_{2,2} & u_{2,3} & \cdots & u_{2, n} \\ & & \ddots & \ddots & \vdots \\ & & & \ddots & u_{n-1, n} \\ 0 & & & & u_{n, n}\end{array}\right]$

Matrix Decomposition

> QR Decomposition

$$
A=Q R
$$

Computation

We first apply Gram-Schmidt process to $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$

$$
\begin{aligned}
\mathbf{u}_{1} & =\mathbf{a}_{1}, & \mathbf{e}_{1} & =\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|} \\
\mathbf{u}_{2} & =\mathbf{a}_{2}-\operatorname{proj}_{\mathbf{u}_{1}} \mathbf{a}_{2}, & \mathbf{e}_{2} & =\frac{\mathbf{u}_{2}}{\left\|\mathbf{u}_{2}\right\|} \\
\mathbf{u}_{3} & =\mathbf{a}_{3}-\operatorname{proj}_{\mathbf{u}_{1}} \mathbf{a}_{3}-\operatorname{proj}_{\mathbf{u}_{2}} \mathbf{a}_{3}, \zeta \mathbf{e}_{3} & =\frac{\mathbf{u}_{3}}{\left\|\mathbf{u}_{3}\right\|} & \vdots \\
& \vdots & & \\
\mathbf{u}_{k} & =\mathbf{a}_{k}-\sum_{j=1}^{k-1} \operatorname{proj}_{\mathbf{u}_{j}} \mathbf{a}_{k}, & \mathbf{e}_{k} & =\frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|}
\end{aligned}
$$

Matrix Decomposition

> QR Decomposition

$A=Q R$

Computation

$$
Q=\left[\begin{array}{lll}
\mathbf{e}_{1} & \cdots & \mathbf{e}_{n}
\end{array}\right]
$$

We can now express $\mathbf{a}_{\mathbf{i}}$ over the newly computed orthonormal basis $\left\{\mathbf{e}_{\mathbf{i}}\right\}$:

$$
\begin{aligned}
\mathbf{a}_{1} & =\left\langle\mathbf{e}_{1}, \mathbf{a}_{1}\right\rangle \mathbf{e}_{1} \\
\mathbf{a}_{2} & =\left\langle\mathbf{e}_{1}, \mathbf{a}_{2}\right\rangle \mathbf{e}_{1}+\left\langle\mathbf{e}_{2}, \mathbf{a}_{2}\right\rangle \mathbf{e}_{2} \\
\mathbf{a}_{3} & =\left\langle\mathbf{e}_{1}, \mathbf{a}_{3}\right\rangle \mathbf{e}_{1}+\left\langle\mathbf{e}_{2}, \mathbf{a}_{3}\right\rangle \mathbf{e}_{2}+\left\langle\mathbf{e}_{3}, \mathbf{a}_{3}\right\rangle \mathbf{e}_{3} \\
& \vdots \\
\mathbf{a}_{k} & =\sum_{j=1}^{k}\left\langle\mathbf{e}_{j}, \mathbf{a}_{k}\right\rangle \mathbf{e}_{j}
\end{aligned} \quad \leadsto \boldsymbol{R}\left[\begin{array}{ccccc}
\left\langle\mathbf{e}_{1}, \mathbf{a}_{1}\right\rangle & \left\langle\mathbf{e}_{1}, \mathbf{a}_{2}\right\rangle & \left\langle\mathbf{e}_{1}, \mathbf{a}_{3}\right\rangle & \cdots & \left\langle\mathbf{e}_{1}, \mathbf{a}_{n}\right\rangle \\
0 & \left\langle\mathbf{e}_{2}, \mathbf{a}_{2}\right\rangle & \left\langle\mathbf{e}_{2}, \mathbf{a}_{3}\right\rangle & \cdots & \left\langle\mathbf{e}_{2}, \mathbf{a}_{n}\right\rangle \\
0 & 0 & \left\langle\mathbf{e}_{3}, \mathbf{a}_{3}\right\rangle & \cdots & \left\langle\mathbf{e}_{3}, \mathbf{a}_{n}\right\rangle \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \left\langle\mathbf{e}_{n}, \mathbf{a}_{n}\right\rangle
\end{array}\right] .
$$

Summary

> Vector Operations
$>$ Vector Space
> Matrices and Transformation
$>$ Matrix Properties
> Matrix Decomposition

Thank you for your listening!
If you have any questions, please come to me :-)

