Computer Vision II: Multiple View Geometry (IN2228)

Chapter 02 Motion and Scene Representation (Part 1 Basic Expression)

Dr. Haoang Li

26 April 2023 12:00-13:30

Announcements

All the following Exam information are from the Department of Studies.

> Summer Semester Exam

- Our exam will tentatively take place on 04 August from 8:00 am to 10:00 am.
- The registration for our exam is possible between 22 May and 30 June.
- Deadline for grading of exams: 06 September 2023.
> Winter Semester Exam (Repeat Exam)
- Our exam will take place between 02 October and 21 October.
- Currently, the exact date of our exam has not been determined.
- The registration for our exams is possible between 11 September and 25 September.

If we obtain any updates in the future, I will inform you in time.

Announcements

Today, we will have the first exercise class.
\checkmark Time: from 16:00 to 18:00
\checkmark Room: 102, Hörsaal 2, "Interims I" (5620.01.102)
\checkmark Detailed content will be provided by teaching assistants.

Daniil Sinitsyn

Viktoria Ehm

Announcements

Exam Content

\checkmark If a slide contains the sentence "this knowledge will not be asked in the exam", it means that our exam will not involve this slide.
\checkmark The reason why we prepare these slides are that they may be useful for your future research projects.
\checkmark If necessary, I will prepare a class for knowledge review in the early July (it is not finally determined).
\checkmark Other information about exam content will be released in the further.

Outline

> Overview
> Coordinate System
> Camera Motion Expression
> 3D Scene Expression

Overview

> General Pipeline of Solving A Multi-view Geometry Problem

\checkmark We commonly formulate the problem as model/function fitting.
\checkmark Input: A set of observed discrete points (no outliers here)
\checkmark Procedure of problem solving

- Select a suitable model/function with unknown parameters
- Estimate the parameters by the least-squares method

Model/function selection

Overview

> Recap on Tasks of Multi-view Geometry

\checkmark Establish point/line correspondences (observed data)
\checkmark Estimate camera motions \} They require knowledge about basic expression of
\checkmark Reconstruct 3D structure $\}$ camera motion and 3D structure
\checkmark Optimization —— It requires knowledge about advanced expression of camera motion, i.e., Lie group and Lie algebra

Coordinate System

> Left-hand and Right-hand Frames

Right-hand XYZ coordinate system is more common in 3D computer vision.

Computer graphics

Computer vision

Camera frame

Coordinate System

> Absolute Position

To express the absolute pose, we need a global reference frame.

Coordinate System

> Absolute Position

World frame and camera frames in VO/SLAM/SFM (3D case)

Coordinate System

> Relative Position

Left and right camera frames in VO/SLAM/SFM

Camera Motion Expression

> Rigid Transformation in 2D
Rigid transformation consists of rotation and translation

$X^{\prime}=X \operatorname{Cos} \theta+Y \operatorname{Sin} \theta$
$Y^{\prime}=Y \operatorname{Cos} \theta-X \operatorname{Sin} \theta$

Transforming point P from global to a local frame

$$
\begin{aligned}
& X=X^{\prime} \operatorname{Cos} \theta-Y^{\prime} \operatorname{Sin} \theta \\
& Y=X^{\prime} \operatorname{Sin} \theta+Y^{\prime} \operatorname{Cos} \theta
\end{aligned}
$$

Transforming point P from local to a global frame

global local

$$
\mathbf{x}_{w}=\mathbf{R}_{\mathbf{x}_{r}}+\mathbf{t}
$$

$$
\mathbf{R}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right], \quad \mathbf{t}=\left[t_{x}, t_{y}\right]^{T}
$$

Camera Motion Expression

> Rigid Transformation in 3D

Rigid transformation consists of rotation and translation

Step 1: Rotation

Step 2: Translation

Camera Motion Expression

> Rigid Transformation in 3D

For the a 3D point \boldsymbol{p}, its coordinates in the world frame \boldsymbol{p}_{w} and coordinates in the camera frame \boldsymbol{p}_{C} are different.

Point \boldsymbol{p} is static, but the coordinate system is variable

Camera Motion Expression

> Rigid Transformation in 3D

$$
\left[\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}, \mathbf{e}_{3}^{\prime}\right]\left[\begin{array}{c}
a_{1}^{\prime} \\
a_{2}^{\prime} \\
a_{3}^{\prime}
\end{array}\right]
$$

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{c}
\mathbf{e}_{1}^{T} \\
\mathbf{e}_{2}^{T} \\
\mathbf{e}_{3}^{T}
\end{array}\right]\left[\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{e}_{1}^{T} \\
\mathbf{e}_{2}^{T} \\
\mathbf{e}_{3}^{T}
\end{array}\right]\left[\mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}, \mathbf{e}_{3}^{\prime}\right]\left[\begin{array}{c}
a_{1}^{\prime} \\
a_{2}^{\prime} \\
a_{3}^{\prime}
\end{array}\right] \\
& \underset{\square}{\square} \quad\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{lll}
\mathbf{e}_{1}^{T} \mathbf{e}_{1}^{\prime} & \mathbf{e}_{1}^{T} \mathbf{e}_{2}^{\prime} & \mathbf{e}_{1}^{T} \mathbf{e}_{3}^{\prime} \\
\mathbf{e}_{2}^{T} \mathbf{e}_{1}^{\prime} & \mathbf{e}_{2}^{T} \mathbf{e}_{2}^{\prime} & \mathbf{e}_{2}^{T} \mathbf{e}_{3}^{\prime} \\
\mathbf{e}_{3}^{T} \mathbf{e}_{1}^{\prime} & \mathbf{e}_{3}^{T} \mathbf{e}_{2}^{\prime} & \mathbf{e}_{3}^{T} \mathbf{e}_{3}^{\prime}
\end{array}\right]}_{\text {rotation matrix }}\left[\begin{array}{c}
a_{1}^{\prime} \\
a_{2}^{\prime} \\
a_{3}^{\prime}
\end{array}\right] \triangleq \mathbf{R a}^{\prime}
\end{aligned}
$$

Camera Motion Expression

> Rigid Transformation in 3D

Rotation (special orthogonal group)

$$
\begin{aligned}
& \mathbf{a}=\mathbf{R a}^{\prime} \\
& \operatorname{SO}(n)=\left\{\mathbf{R} \in \mathbb{R}^{n \times n} \mid \mathbf{R R}^{T}=\mathbf{I}, \operatorname{det}(\mathbf{R})=1\right\} \\
& \mathbf{a}^{\prime}=\mathbf{R}^{-1} \mathbf{a}=\mathbf{R}^{T} \mathbf{a}
\end{aligned}
$$

Translation $\in \mathbb{R}^{3} \quad$ 3D real vector space

$$
\mathbf{a}^{\prime}=\mathbf{R a}+\mathbf{t}
$$

Camera Motion Expression

> Rigid Transformation in 3D

Multiple transformations

- Imprecise way

$$
\begin{gathered}
\mathbf{b}=\mathbf{R}_{1} \mathbf{a}+\mathbf{t}_{1}, \quad \mathbf{c}=\mathbf{R}_{2} \mathbf{b}+\mathbf{t}_{2} \\
\mathbf{c}=\mathbf{R}_{2}\left(\mathbf{R}_{1} \mathbf{a}+\mathbf{t}_{1}\right)+\mathbf{t}_{2}
\end{gathered}
$$

- More compact way

$$
\tilde{\mathbf{b}}=\mathbf{T}_{1} \tilde{\mathbf{a}}, \tilde{\mathbf{c}}=\mathbf{T}_{2} \tilde{\mathbf{b}} \quad \Rightarrow \tilde{\mathbf{c}}=\mathbf{T}_{2} \mathbf{T}_{1} \tilde{\mathbf{a}}
$$

How to achieve this?

Camera Motion Expression

> Rigid Transformation in 3D

Multiple transformations

- Homogeneous coordinates

3D Representarion of homogeneous space

$$
\left[\begin{array}{l}
\mathbf{a}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{a} \\
1
\end{array}\right] \triangleq \mathbf{T}\left[\begin{array}{l}
\mathbf{a} \\
1
\end{array}\right]
$$

- Definition of special Euclidean group

$$
\mathrm{SE}(3)=\left\{\left.\mathbf{T}=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right] \in \mathbb{R}^{4 \times 4} \right\rvert\, \mathbf{R} \in \mathrm{SO}(3), \mathbf{t} \in \mathbb{R}^{3}\right\}
$$

Camera Motion Expression

> Rigid Transformation in 3D

Inverse transformation

- Derivation

$$
Y=R X+t \quad \measuredangle \quad X=R^{T}(Y-t)=R^{T} Y-R^{T} t
$$

- Conclusion

$$
\mathbf{T}^{-1}=\left[\begin{array}{cc}
\mathbf{R}^{T} & -\mathbf{R}^{T} \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]
$$

Camera Motion Expression

> Rigid Transformation in 3D

From absolute poses to relative pose

- Given absolute poses $\left(R_{1}, t_{1}\right)$ and $\left(R_{2}, t_{2}\right)$, how to compute the relative pose $\left(R_{12}, t_{12}\right)$?

$$
\begin{aligned}
& X_{W}=R_{1} X_{1}+t_{1}=R_{2} X_{2}+t_{2} \\
& R_{1} X_{1}+\left(t_{1}-t_{2}\right)=R_{2} X_{2} \\
& \underbrace{R_{2}^{T} R_{1}}_{R_{12}} X_{1}+\underbrace{R_{2}^{T}\left(t_{1}-t_{2}\right)}_{t_{12}}=X_{2}
\end{aligned}
$$

Camera Motion Expression

> Rigid Transformation in 3D

Camera position and translation

To express the position of a camera in the world frame, which one should we use?

$$
\begin{aligned}
& \quad\left(\mathbf{R}_{W \rightarrow C}, \mathbf{t}_{W \rightarrow C}\right) \\
& \quad\left(\mathbf{R}_{C \rightarrow W}, \mathbf{t}_{C \rightarrow W}\right) \\
& \begin{array}{c}
\text { Origin of the camera } \\
\text { in the world frame }
\end{array} \\
& \left.C \begin{array}{l}
\mathbf{t} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right] \text { World frame }
\end{aligned}
$$

Camera Motion Expression

\Rightarrow Similarity Transformation in 3D

Definition

$$
\begin{array}{cc}
\mathrm{SE}(3) & \mathbf{T}=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]
\end{array} \quad \underset{\operatorname{Sim}(3) \quad \mathbf{T}_{S}=\left[\begin{array}{cc}
s \mathbf{R} & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]}{6 \text { degrees of freedom (DOF) }} \begin{array}{r}
7 \text { degrees of freedom (DOF) }
\end{array}
$$

Camera Motion Expression

> Similarity Transformation in 3D

Application of Sim(3)

(a) before optimisation

(b) 6 DoF optimisation

(c) 7 DoF optimisation

A demo video of loop closure/correction

(a) before optimisation

(c) 7 DoF optimisation

(b) 6 DoF optimisation

(d) aerial photo

Camera Motion Expression

$>$ Motion of 3D Line

Plücker coordinates
v: direction of 3D line (typically a unit vector) n : normal of projection plane
$\mathrm{n}=\mathbf{Q} \times \mathbf{v}$
$\|\mathbf{n}\|=d^{*}\|\mathbf{v}\|$

$$
\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta
$$

Camera Motion Expression

> Motion of 3D Line

Plücker coordinates defined by endpoints

$$
\begin{gathered}
n=p \times v=\left[\begin{array}{c}
p]_{x} v \\
p x-q x \\
p y-q y \\
p z-q z
\end{array}\right] \quad=\left(\begin{array}{ccc}
0 & -p z & p y \\
p z & 0 & -p x \\
-p y & p x & 0
\end{array}\right)\left[\begin{array}{c}
p x-q x \\
p y-q y \\
p z-q z
\end{array}\right]=\left[\begin{array}{c}
-p z \cdot(p y-q y)+p y \cdot(p z-q z) \\
p z \cdot(p x-q x)-p x \cdot(p z-q z) \\
-p y \cdot(p x-q x)+p x \cdot(p y-q y)
\end{array}\right]=\left[\begin{array}{l}
p z \cdot q y-p y \cdot q z \\
-p z \cdot q x+p x \cdot q z \\
p y \cdot q x-p x \cdot q y
\end{array}\right]
\end{gathered}
$$

\checkmark Homogeneous coordinates $[v, n]$ are up to scale
\checkmark Two directions are orthogonal $n^{T} v=0$
Degrees of freedom: 4

Camera Motion Expression

> Motion of 3D Line

The transformation for the Plücker line coordinates [1]

Norm of \mathbf{n} is changed

Norm of \mathbf{v} is unchanged
[1] A. Bartoli and P. Sturm, "The 3D line motion matrix and alignment of line reconstructions," in Proc. IEEE Comput. Soc. Conf. Comput.

Camera Motion Expression

> Rotation Expression

Common methods

- Rotation matrix
- Euler angles
- Angle-axis (rotation vector)
- Quaternion
- Cayley's representation

Relationship

- There is no ideal rotation representation for all purposes
- in some sense, all are equivalent because each representation has an equivalent rotation matrix representation.
- A choice must indeed be made for calculations and coordinate conventions.

Camera Motion Expression

> Euler Angles

Definition

An intuitive illustration

- Intrinsic rotations are w.r.t. axes of a coordinate system XYZ attached to a moving body (i.e. rotation about axis in the current coordinate, like object space).
- Extrinsic rotations are w.r.t. the axes of the fixed coordinate system xyz (i.e. rotation about axis in the original coordinate, like world space).

Camera Motion Expression

> Euler Angles

Convert Euler angles to rotation matrix

Euler angles in the ZYX order (intrinsic rotation around dynamic axes)

$$
T_{0,3}=T_{0,1} T_{1,2} T_{2,3}=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\alpha) & -\sin (\alpha) & 0 \\
\sin (\alpha) & \cos (\alpha) & 0 \\
0 & 0 & 1
\end{array}\right] *\left[\begin{array}{ccc}
\cos (\beta) & 0 & \sin (\beta) \\
0 & 1 & 0 \\
-\sin (\beta) & 0 & \cos (\beta)
\end{array}\right] *\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\gamma) & -\sin (\gamma) \\
0 & \sin (\gamma) & \cos (\gamma)
\end{array}\right]=
$$

$$
\left[\begin{array}{ccc}
\cos (\alpha) \cos (\beta) & \cos (\alpha) \sin (\beta) \sin (\gamma)-\sin (\alpha) \cos (\gamma) & \cos (\alpha) \sin (\beta) \cos (\gamma)+\sin (\alpha) \sin (\gamma) \\
\sin (\alpha) \cos (\beta) & \sin (\alpha) \sin (\beta) \sin (\gamma)+\cos (\alpha) \cos (\gamma) & \sin (\alpha) \sin (\beta) \cos (\gamma)-\cos (\alpha) \sin (\gamma) \\
-\sin (\beta) & \cos (\beta) \sin (\gamma) & \cos (\beta) \cos (\gamma)
\end{array}\right]
$$

Camera Motion Expression

> Euler Angles

Convert Euler angles to rotation matrix

$$
\begin{aligned}
& R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right] \\
& \theta_{x}=\operatorname{atan} 2\left(r_{32}, r_{33}\right) \\
& \theta_{y}=\operatorname{atan} 2\left(-r_{31}, \sqrt{r_{32}^{2}+r_{33}^{2}}\right) \\
& \theta_{z}=\operatorname{atan} 2\left(r_{21}, r_{11}\right)
\end{aligned}
$$

atan2(y, x) returns the angle θ between the ray to the point (x, y) and the positive x-axis, confined to $(-\pi, \pi]$.

Illustration of atan2

Camera Motion Expression

Euler angles in the ZYX order (intrinsic rotation around dynamic axes)

When the pitch (green) and yaw (magenta) gimbals become aligned, changes to roll (blue) and yaw apply the same rotation to the airplane.

Second along rotated $\mathrm{Y} \mid$ axis Finally along rotate X axis

Pitch is 90 degree X is rotated to $-Z$

The third rotation along X is same to the original Z axis, losing DoF

The third rotation is using the same axis as the first one

Camera Motion Expression

> Axis-angle Representation (Rotation Vector)

Definition

The angle $\boldsymbol{\theta}$ and axis unit vector e define a rotation, concisely represented by the rotation vector $\boldsymbol{\theta}$.

Example

$$
(\text { axis, angle })=\left(\left[\begin{array}{c}
e_{x} \\
e_{y} \\
e_{z}
\end{array}\right], \theta\right)=\left(\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right], \frac{-\pi}{2}\right)
$$

Camera Motion Expression

> Axis-angle Representation (Rotation Vector)

Convert axis-angle representation to rotation matrix

Rodrigues' rotation formula

$$
\begin{gathered}
\mathbf{R}=\cos \theta \mathbf{I}+(1-\cos \theta) \mathbf{n n}^{T}+\sin \theta \mathbf{n}^{\wedge} \\
\mathbf{R}(\mathbf{n}, \theta)=\left[\begin{array}{ccc}
n_{x}^{2}(1-c \theta)+c \theta & n_{x} n_{y}(1-c \theta)+n_{z} s \theta & n_{x} n_{z}(1-c \theta)-n_{y} s \theta \\
n_{x} n_{y}(1-c \theta)-n_{z} s \theta & n_{y}^{2}(1-c \theta)+c \theta & n_{y} n_{z}(1-c \theta)+n_{x} s \theta \\
n_{x} n_{z}(1-c \theta)+n_{y} s \theta & n_{y} n_{z}(1-c \theta)-n_{x} s \theta & n_{z}^{2}(1-c \theta)+c \theta
\end{array}\right]
\end{gathered}
$$

Camera Motion Expression

> Axis-angle Representation (Rotation Vector)

Convert rotation matrix to axis-angle representation

- Rotation angle

$$
\begin{aligned}
\operatorname{tr}(\mathbf{R}) & =\cos \theta \operatorname{tr}(\mathbf{I})+(1-\cos \theta) \operatorname{tr}\left(\mathbf{n n}^{T}\right)+\sin \theta \operatorname{tr}\left(\mathbf{n}^{\wedge}\right) \\
& =3 \cos \theta+(1-\cos \theta) \\
& =1+2 \cos \theta . \quad \text { "tr" represents trace of matrix }
\end{aligned}
$$

$$
\theta=\arccos \left(\frac{\operatorname{tr}(\mathbf{R})-1}{2}\right)
$$

- Rotation axis

$$
\mathbf{n}=\frac{1}{2 \sin \theta}\left[\begin{array}{l}
R_{32}-R_{23} \\
R_{13}-R_{31} \\
R_{21}-R_{12}
\end{array}\right]
$$

Camera Motion Expression

> Quaternion

Definition

Euler's formula

$$
0 \text { deg. -> 1+0i }
$$

$$
90 \text { deg. -> 0+1i }
$$

$$
180 \text { deg. }->-1+0 i
$$

$$
270 \text { deg. }->0-1 i
$$

From 2D to 3D

$$
q_{0}=\cos \left(\frac{\theta}{2}\right)
$$

$$
q_{1}=\hat{x} \sin \left(\frac{\theta}{2}\right)
$$

$$
q_{2}=\hat{y} \sin \left(\frac{\theta}{2}\right)
$$

$$
q_{3}=\hat{z} \sin \left(\frac{\theta}{2}\right)
$$

Camera Motion Expression

> Quaternion

Application to SLAM

Ground-truth trajectories

We provide the groundtruth trajectory as a text file containing the translation and orientation of the camera in a fixed coordinate frame. Note that also our automatic evaluation tool expects both the groundtruth and estimated trajectory to be in this format

- Each line in the text file contains a single pose.
- The format of each line is 'timestamp tx ty tz qx qy qz qw'
- timestamp (float) gives the number of seconds since the Unix epoch.
- tx ty tz (3 floats) give the position of the optical center of the color camera with respect to the world origin as defined by the motion capture system.
- $\mathbf{q x}$ qy qz qw (4 floats) give the orientation of the optical center of the color camera in form of a unit quaternion with respect to the world origin as defined by the motion capture system.
" The file may contain comments that have to start with "\#".

https://cvg.cit.tum.de/data/datasets/rgbd-dataset/file formats

Camera Motion Expression

> Quaternion

Convert quaternion to a matrix rotation

Quaternion

$$
\mathbf{q}=q_{r}+q_{i} \mathbf{i}+q_{j} \mathbf{j}+q_{k} \mathbf{k} \quad \mathbf{q}=\left[\cos \frac{\theta}{2}, \mathbf{n} \sin \frac{\theta}{2}\right]
$$

A 3D point is treated as a quaternion with a real coordinate equal to zero

$$
\mathbf{p}=\left(p_{x}, p_{y}, p_{z}\right)=p_{x} \mathbf{i}+p_{y} \mathbf{j}+p_{z} \mathbf{k}
$$

$$
\mathbf{p}=[0, x, y, z]=[0, \mathbf{v}]
$$

Camera Motion Expression

> Quaternion

Convert quaternion to a matrix rotation

$$
\begin{aligned}
& \text { 3D point } \\
& \text { (Hamilton product) } \quad \mathbf{p}^{\prime}=\mathbf{q} \mathbf{p} \mathbf{q}^{-1} \\
& \text { quaternion } \\
& \text { We can find that real part of } \mathbf{p}^{\prime} \text { is also zero } \\
& \mathbf{n}^{T}(\mathbf{n} \times \mathbf{v})=0 \\
& \text { Just for derivation } \\
& q=q_{w}+i q_{x}+j q_{y}+k q_{z} \\
& \mathbf{p}^{\prime}=\mathbf{R} \mathbf{p} \\
& R=\left[\begin{array}{ccc}
1-2\left(q_{y}^{2}+q_{z}^{2}\right) & 2\left(q_{x} q_{y}-q_{w} q_{z}\right) & 2\left(q_{w} q_{y}+q_{x} q_{z}\right) \\
2\left(q_{x} q_{y}+q_{w} q_{z}\right) & 1-2\left(q_{x}^{2}+q_{z}^{2}\right) & 2\left(q_{y} q_{z}-q_{w} q_{x}\right) \\
2\left(q_{x} q_{z}-q_{w} q_{y}\right) & 2\left(q_{w} q_{x}+q_{y} q_{z}\right) & 1-2\left(q_{x}^{2}+q_{y}^{2}\right)
\end{array}\right] \\
& \text { Remembering this } \\
& \text { conclusion is enough for } \\
& \text { engineering projects }
\end{aligned}
$$

Camera Motion Expression

> Summary

Representation	Parameters
Matrix	3×3 matrix R with 9 parameters, with 6 d.o.f. removed via orthogonality constraints.
Euler angles:	3 parameters (ϕ, θ, ψ), in range $[0,2 \pi) \times[-\pi / 2, \pi / 2] \times[0,2 \pi)$
Axis-angle	$3+1$ parameters (\mathbf{a}, θ), in range $S_{2} \times[0, \pi)$ with 1 d.o.f. removed via unit vector constraint
Rot. vector	3 parameters \mathbf{m}, in range
Quaternion	4 parameters $\left(q_{0}, q_{1}, q_{2}, q_{3}\right)$, with 1 d.o.f. removed via unit quaternion constraint.

Camera Motion Expression

> Cayley's Representation

\checkmark Definition

The Cayley transform, which maps any skew-symmetric matrix A to a rotation,mátrix

$$
\begin{gathered}
{\left[\begin{array}{cc}
0 & \tan \frac{\theta}{2} \\
-\tan \frac{\theta}{2} & 0
\end{array}\right] \leftrightarrow\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]} \\
\text { 2D case }
\end{gathered}
$$

The 180° rotation matrix is excluded, because $\tan \theta / 2$ goes to infinity.

$$
A \mapsto(I+A)(I-A)^{-1}
$$

$$
\begin{aligned}
& \begin{array}{l}
q_{0}=\cos \left(\frac{\theta}{2}\right) \\
q_{1}=\hat{x} \sin \left(\frac{\theta}{2}\right) \\
q_{2}=\hat{y} \sin \left(\frac{\theta}{2}\right) \\
q_{3}=\hat{z} \sin \left(\frac{\theta}{2}\right) \\
(\hat{x}, \hat{y}, \hat{z})
\end{array} \\
& \text { is the rotation axis }
\end{aligned}
$$

$q_{0}=\cos \left(\frac{\theta}{2}\right)$
$(\hat{x}, \hat{y}, \hat{z})$
$q_{1}=\hat{x} \sin \left(\frac{\theta}{2}\right)$
$q_{2}=\hat{y} \sin \left(\frac{\theta}{2}\right)$
is the rotation axis $\left(\frac{\theta}{2}\right)$

$$
\left.\begin{array}{ccc}
+x^{2}-y^{2}-z^{2} & 2 x y-2 z & 2 y+2 x z \\
2 x y+2 z & 1-x^{2}+y^{2}-z^{2} & 2 y z-2 x \\
2 x z-2 y & 2 x+2 y z & 1-x^{2}-y^{2}+z^{2}
\end{array}\right]
$$

3D case

The 180° rotation matrix is excluded, because $\tan \theta / 2$ goes to infinity.

Camera Motion Expression

> Cayley's Representation
\checkmark Discussion

- Although in practical applications we can hardly afford to ignore 180° rotations, the Cayley transform is still a potentially useful tool.
- For example, in SLAM, we have prior knowledge of a rough constant velocity motion model. We can leverage this information for disambiguation.
- This rotation parameterization is free of trigonometric functions.
- It has a smaller number of parameters than quaternion.

Camera Motion Expression

> From Representation to Estimation: An Overview

\checkmark Solution 1: Disentangle translation from rotation

- Generate a linear system with respect to translation.

$$
\mathbf{A t}=\mathbf{b} \quad \begin{aligned}
& \mathbf{A} \text { and } \mathbf{b} \text { are with respect to unknown rotation } \\
& \text { and/or known coordinates of correspondences }
\end{aligned}
$$

- Obtain the least-squares solution of translation with respect to rotation.

$$
\mathbf{t}=\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top} \mathbf{b}
$$

- Define an objective function with respect to translation.

$$
\min _{\mathbf{R}, \mathbf{t}} F(\mathbf{R}, \mathbf{t}) \triangleq \sum_{i=0}^{m} f_{i}^{2}(\mathbf{R}, \mathbf{t})+\sum_{j=0}^{n} g_{j}^{2}(\mathbf{R}, \mathbf{t}) \measuredangle \min _{\mathbf{s}} F(\mathbf{s}) \quad \begin{aligned}
& \mathbf{s} \text { represents the rotation } \\
& \text { parameters, e.g., Euler angles }
\end{aligned}
$$

Camera Motion Expression

> From Representation to Estimation: An Overview

\checkmark Solution 1: Disentangle translation from rotation

- Generate a high-order univariate polynomial or multivariate polynomial system
$\left\{\begin{aligned} f_{1}\left(x_{1}, \ldots, x_{m}\right) & =0 \\ & \vdots \\ f_{n}\left(x_{1}, \ldots, x_{m}\right) & =0,\end{aligned}\right.$

$$
\begin{aligned}
x^{2}+y^{2}-5 & =0 \\
x y-2 & =0
\end{aligned}
$$

Multivariate polynomial system (lower order in general)

$$
f(x)=\sum_{k=0}^{8} \delta_{k} x^{k}=0
$$

Univariate polynomial system (higher order in general)

- Solvers [1]

Groebner basis

Eigenvalue of coefficient matrix
[1] Ji Zhao, Laurent Kneip, Yijia He, and Jiayi Ma. Minimal Case Relative Pose Computation using Ray-Point-Ray Features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(5): 1176-1190, 2020.

Camera Motion Expression

> From Representation to Estimation: An Overview

\checkmark Solution 2: Simultaneously computing translation and rotation

- Generate a matrix

$$
\boldsymbol{x}^{\prime \top}\left(\mathbf{R}\left[\mathbf{t}_{\times}\right]\right] \boldsymbol{x}=0 \quad \begin{array}{r}
\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x}=0 \\
\text { Essential matrix }
\end{array}
$$

- Rotation decomposition

[^0]\[

\lambda\left[$$
\begin{array}{c}
u \\
v \\
1
\end{array}
$$\right]=\left[$$
\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}
$$\right] \cdot\left[$$
\begin{array}{c}
X_{w} \\
Y_{w} \\
1
\end{array}
$$\right]
\]

Projection matrix (simplified by coplanarity constraint)

$$
\begin{gathered}
{\left[\begin{array}{lll}
h_{11}^{j} & h_{12}^{j} & h_{13}^{j} \\
h_{21}^{j} & h_{22}^{j} & h_{23}^{j} \\
h_{31}^{j} & h_{33}^{j} & h_{33}^{j}
\end{array}\right]=\left[\begin{array}{ccc}
\alpha_{u} & 0 & u_{0} \\
0 & \alpha_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
r_{11}^{j} & r_{12}^{j} & t_{1}^{j} \\
r_{21}^{j} & r_{22}^{j} & t_{2}^{j} \\
r_{31}^{j} & r_{32}^{j} & t_{3}^{j}
\end{array}\right]} \\
\\
\text { QR decomposition }
\end{gathered}
$$

Camera Motion Expression

> Non-rigid Motion

Comparison between rigid and non-rigid Structure from Motion (SFM)
\checkmark Rigid SFM allowing a reconstruction of the world from different views.
\checkmark Non-rigid SFM implies that both the camera and the scene are both dynamic (time-dependent).

Camera Motion Expression

> Non-rigid Motion

One prior constraint: as rigid as possible

Each edge basically satisfies the rigid transformation

All the points from the same super pixel satisfy the same rigid transformation

3D Scene Representation

> Overview

Common 3D representation methods

A 3D map reconstructed by a SLAM method

How to choose appropriate representation?

3D Scene Representation

> Point Cloud

A point cloud is a discrete set of data points in space. The points may represent a 3D shape or object. Each point position has its set of Cartesian coordinates (X, Y, Z).

Point cloud obtained by visual SLAM

Point cloud obtained by Laser SLAM

3D Scene Representation

> Voxel Grid

A voxel grid geometry is a 3D grid of values organized into layers of rows and columns. Each row, column, and layer intersection in the grid is called a voxel or small 3D cube.

Voxels

Semantic scene completion

Obstacle map for drones

3D Scene Representation

> Mesh

A polygon mesh is a collection of vertices, edges and faces that defines the shape of a polyhedral object.

3D Scene Representation

> Mesh

Triangle Mesh vs. Quad Mesh

(a)

Triangle mesh
(b)

- Triangle mesh type is preferred in the case where geometry function is quite easy and less complex, mostly for regular geometrical shapes.
- Quad mesh give us relatively accurate results, and are more used in complex systems in general.

Quad mesh

3D Scene Representation

> Comparison

3D Scene Representation
Signed Distance Function (SDF)

Point cloud

Voxel grid

Mesh

SDF

3D Scene Representation

> Signed Distance Function (SDF)

6.6	5.9	5.3	4.7	4.3	3.9	3.6	3.5	3.5	3.6	3.9	4.3	4.7	5.3	5.9	6.6
5.9	5.2	4.5	3.9	3.4	3.0	2.7	2.5	2.5	2.7	3.0	3.4	3.9	4.5	5.2	5.9
5.3	4.5	3.8	3.1	2.5	2.0	1.7	1.5	1.5	1.7	2.0	2.5	3.1	3.8	4.5	5.3
4.7	3.9	3.1	2.4	1.7	1.1	0.7	0.5	0.5	0.7	1.1	1.7	2.4	3.1	3.9	4.7
4.3	3.4	2.5	1.7	0.9	0.3	-0.2	-0.5	-0.5	-0.2	0.3	0.9	1.7	2.5	3.4	4.3
3.9	3.0	2.0	1.1	0.3	-0.5	-1.1	-1.5	-1.5	-1.1	-0.5	0.3	1.1	2.0	3.0	3.9
3.6	2.7	1.7	0.7	-0.2	-1.1	-1.9	-2.4	-2.4	-1.9	-1.1	-0.2	0.7	1.7	2.7	3.6
3.5	2.5	1.5	0.5	-0.5	-1.5	-2.4	-3.3	-3.3	-2.4	-1.5	-0.5	0.5	1.5	2.5	3.5
3.5	2.5	1.5	0.5	-0.5	-1.5	-2.4	-3.3	-3.3	-2.4	-1.5	-0.5	0.5	1.5	2.5	3.5
3.6	2.7	1.7	0.7	-0.2	-1.1	-1.9	-2.4	-2.4	-1.9	-1.1	-0.2	0.7	1.7	2.7	3.6
3.9	3.0	2.0	1.1	0.3	-0.5	-1.1	-1.5	-1.5	-1.1	-0.5	0.3	1.1	2.0	3.0	3.9
4.3	3.4	2.5	1.7	0.9	0.3	-0.2	-0.5	-0.5	-0.2	0.3	0.9	1.7	2.5	3.4	4.3
4.7	3.9	3.1	2.4	1.7	1.1	0.7	0.5	0.5	0.7	1.1	1.7	2.4	3.1	3.9	4.7
5.3	4.5	3.8	3.1	2.5	2.0	1.7	1.5	1.5	1.7	2.0	2.5	3.1	3.8	4.5	5.3
5.9	5.2	4.5	3.9	3.4	3.0	2.7	2.5	2.5	2.7	3.0	3.4	3.9	4.5	5.2	5.9
6.6	5.9	5.3	4.7	4.3	3.9	3.6	3.5	3.5	3.6	3.9	4.3	4.7	5.3	5.9	6.6

Zero-value SDF isosurface

From isosurface to mesh:
Marching cubes algorithm

3D Scene Representation

> Signed Distance Function (SDF)

3D space discretization

Isosurface detection based on SDF

Vertex 3 inside (or outside) the volume

Isosurface facet

3D Scene Representation

> Signed Distance Function (SDF)

Grid size $=10$
70 Facets
Grid size $=5$
220 Facets 220 Facets
 27000 Facets

Higher number of cubes leads to higher resolution of mesh
15 cube configurations

3D Scene Representation

> Signed Distance Function (SDF)

Demo video of DeepSDF [1]
[1] Jeong Joon Park et al., "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation", in CVPR, 2019

3D Scene Representation

> "Line" Cloud

Combination of points and lines

Point cloud

3D Scene Representation

> Integrated Information
$\checkmark \quad$ Structured information

- Parallelism and orthogonality

2D lines clustered by vanishing points

- Co-planarity

Reconstuctrued 3D maps with coplanar lines

A map composed of structured 3D lines

3D Scene Representation

> Integrated Information
\checkmark Semantic information

\rangle

Semantic 2D maps
Semantic 3D maps

Summary

$>$ Overview
> Coordinate System
> Camera Motion Expression
> 3D Scene Expression

Thank you for your listening!
If you have any questions, please come to me :-)

[^0]: Singular value decomposition (SVD)

