Computer Vision II: Multiple View Geometry (IN2228)

Chapter 02 Motion and Scene Representation (Part 2 Lie Group and Lie Algebra)

Dr. Haoang Li

27 April 2023 11:00-11:45

Today's Outline

> Motivation
> Concepts of Group
> Lie Group and Lie Algebra

Motivation

\checkmark Optimize the initial estimation (expression->computation->optimization) Find a constraint-free optimization strategy

$$
\mathrm{SO}(n)=\left\{\mathbf{R} \in \mathbb{R}^{n \times n} \mid \mathbf{R R}^{T}=\mathbf{I}, \operatorname{det}(\mathbf{R})=1\right\}
$$

Orthogonality constraint

Concepts of Group

> Definition and properties of group
A group is an algebraic structure of one set plus one operator.

$$
G=(A, \cdot)
$$

" \bullet " denotes the operator instead of multiplication

A group should satisfy the following conditions (e.g., integer set plus addition)

- Closure: $\forall a_{1}, a_{2} \in A, a_{1} \cdot a_{2} \in A$.
- Associative law: $\forall a_{1}, a_{2}, a_{3} \in A,\left(a_{1} \cdot a_{2}\right) \cdot a_{3}=a_{1} \cdot\left(a_{2} \cdot a_{3}\right)$.
- Identity element: $\exists a_{0} \in A$, s.t. $\forall a \in A, a_{0} \cdot a=a \cdot a_{0}=a$. "0" for addition
- Inverse: $\forall a \in A, \exists a^{-1} \in A$, st $a \cdot a^{-1}=a_{0} . \begin{aligned} & \mathrm{x}_{0} \text { and }-\mathrm{x}_{0} \text { for addition } \\ & \mathrm{x}_{0} \text { and } 1 / \mathrm{x}_{0} \text { for multiplication } 1 \text { " for multiplication }\end{aligned}$

Concepts of Group

> Common groups
\checkmark General Linear group $\mathrm{GL}(\mathrm{n})$. The invertible $\mathrm{n} * \mathrm{n}$ matrix with matrix multiplication.
\checkmark Special Orthogonal Group SO(n) or the rotation matrix group, where $\mathrm{SO}(2)$ and $\mathrm{SO}(3)$ is the most common.

- Rotation matrix set plus matrix multiplication form a group.
- Unit element: Identity matrix
- Identity element: $R^{*} \mathrm{R}^{-1}=1$
\checkmark Special Euclidean group SE(n) described earlier, such as SE(2) and SE(3).

Lie Group and Lie Algebra

> Lie Group

- Lie Group refers to a group with continuous (smooth) properties.
- $S O(n)$ and $S E(n)$ are continuous in real space since we can intuitively imagine that a rigid body moving continuously in the space, so they are all Lie Groups.
- Two matrices in $\mathrm{SO}(3)$ or $\mathrm{SE}(3)$ can be multiplied, but not added, which affects the derivate computation.

$$
\tilde{\mathbf{b}}=\mathbf{T}_{1} \tilde{\mathbf{a}}, \tilde{\mathbf{c}}=\mathbf{T}_{2} \tilde{\mathbf{b}} \quad \Rightarrow \tilde{\mathbf{c}}=\mathbf{T}_{2} \mathbf{T}_{1} \tilde{\mathbf{a}}
$$

Lie Group and Lie Algebra

$>$ Introduction to Lie Algebra (not very formal, just for understanding)
$R(t)$ denotes a rotation of a camera that changes continuously over time

$$
\mathbf{R}(t) \mathbf{R}(t)^{T}=\mathbf{I}
$$

By taking derivatives with respect to the time t, we obtain

$$
\dot{\mathbf{R}}(t) \mathbf{R}(t)^{T}+\mathbf{R}(t) \dot{\mathbf{R}}(t)^{T}=0 . \quad \dot{\mathbf{R}} \text { represents the derivative }
$$

We move the second term to the right side and rewrite it based on the transpose

$$
\underset{\text { skew-symmetric matrix }}{\dot{\mathbf{R}}(t) \mathbf{R}(t)^{T}}=-\left(\dot{\mathbf{R}}(t) \mathbf{R}(t)^{T}\right)^{T} .
$$

Lie Group and Lie Algebra

> Introduction to Lie Algebra

$$
\begin{aligned}
\mathbf{a}=\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right)^{\top} \quad \mathbf{a}^{\wedge}= & \mathbf{A}=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right], \quad \mathbf{A}^{\vee}=\mathbf{a} . \\
& {\left[\left[x_{1}, x_{2}, x_{3}\right]^{\top}\right]_{\times}=\left[\begin{array}{ccc}
0 & -x_{3} & x_{2} \\
x_{3} & 0 & -x_{1} \\
-x_{2} & x_{1} & 0
\end{array}\right] }
\end{aligned}
$$

For writing simplification, we denote the skew-symmetric matrix by

$$
\dot{\mathbf{R}}(t) \mathbf{R}(t)^{T}=\underline{\phi(t)^{\wedge}} . \quad \underline{3^{*} 1 \text { vector }} \text { What's the meaning of } \varphi(t)^{\wedge} \text { ? }
$$

Right multiply both sides by $R(t)$, we have

$$
\dot{\mathbf{R}}(t)=\phi(t)^{\wedge} \mathbf{R}(t)
$$

We use the first-order Taylor series arourid t_{0} to expand $\mathrm{R}(\mathrm{t})$
$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$

$$
\begin{aligned}
\mathbf{R}(t) & \approx \mathbf{R} \underline{\left(t_{0}\right)+\dot{\mathbf{R}}\left(t_{0}\right)}\left(t-\underline{\left.t_{0}\right)}\right. \\
& =\mathbf{I}+\underline{\phi\left(t_{0}\right)^{\wedge}}(\underline{(t)} .
\end{aligned}
$$

$$
t_{0}=0
$$

$$
\mathbf{R}(0)=\mathbf{I}
$$

Lie Group and Lie Algebra

> Introduction to Lie Algebra

$$
0->\times 0
$$

Lie Group and Lie Algebra

> Definition of Lie Algebra

Lie Algebra so(3)
$\mathfrak{s o}(3)=\left\{\phi \in \mathbb{R}^{3}\right.$ or $\left.\boldsymbol{\Phi}=\phi^{\wedge} \in \mathbb{R}^{3 \times 3}\right\} . \quad \boldsymbol{\Phi}=\boldsymbol{\phi}^{\wedge}=\left[\begin{array}{ccc}0 & -\phi_{3} & \phi_{2} \\ \phi_{3} & 0 & -\phi_{1} \\ -\phi_{2} & \phi_{1} & 0\end{array}\right] \in \mathbb{R}^{3 \times 3}$

Its relationship to $\mathrm{SO}(3)$ is given by the exponential map:

$$
\mathbf{R}=\exp \left(\phi^{\wedge}\right) . \quad \text { Detailed formula will be introduced later }
$$

Through it, we map any vector in so(3) to a rotation matrix in SO(3).

Lie Group and Lie Algebra

$>$ Definition of Lie Algebra

Lie Algebra se(3)

$$
\mathfrak{s e}(3)=\left\{\boldsymbol{\xi}=\left[\begin{array}{c}
\rho \\
\phi
\end{array}\right] \in \mathbb{R}^{6}, \boldsymbol{\rho} \in \mathbb{R}^{3}, \phi \in \mathfrak{s o}(3), \boldsymbol{\xi}^{\wedge}=\left[\begin{array}{cc}
\phi^{\wedge} & \rho \\
0^{T} & 0
\end{array}\right] \in \mathbb{R}^{4 \times 4}\right\}
$$

\checkmark The first three dimensions are "translation part" $\boldsymbol{\rho}$ (but keep in mind that the meaning is different from the translation in the matrix).
The second part is a rotation part φ, which is essentially the so(3) element.

Lie Group and Lie Algebra

> Definition of Lie Algebra

How to calculate $\exp (\varphi \wedge)$, i.e., an exponential map of a matrix?

$$
\begin{aligned}
& \exp \left(\phi^{\wedge}\right)=\exp \left(\theta \mathbf{n}^{\wedge}\right)=\sum_{n=0}^{\infty} \frac{1}{n!}\left(\theta \mathbf{n}^{\wedge}\right)^{n} \\
& \text { 3D vector with the norm } \\
& \theta \text { and unit direction n. } \quad \ldots \\
& \exp \left(\theta \mathbf{n}^{\wedge}\right)=\cos \theta \mathbf{I}+(1-\cos \theta) \mathbf{n n}^{T}+\sin \theta \mathbf{n}^{\wedge} .
\end{aligned}
$$

This shows that so(3) is actually the rotation vector, and the exponential map is just Rodrigues' formula.

Lie Group and Lie Algebra

$>$ Definition of Lie Algebra

Conversely, if we define a logarithmic map, we can also map the elements in SO(3) to so(3):

$$
\phi=\ln (\mathbf{R})^{\vee}=\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}(\mathbf{R}-\mathbf{I})^{n+1}\right)^{\vee} .
$$

Use the properties of the trace to solve the rotation angle and the rotation axis separately

$$
\theta=\arccos \left(\frac{\operatorname{tr}(\mathbf{R})-1}{2}\right) .
$$

$$
\mathbf{R n}=\mathbf{n}
$$

The axis n is the eigenvector corresponding to the matrix R 's eigenvalue 1 .

Lie Group and Lie Algebra

$>$ Definition of Lie Algebra

$$
\mathbf{R}=\cos \theta \mathbf{I}+(1-\cos \theta) \mathbf{n n}^{T}+\sin \theta \mathbf{n}^{\wedge}
$$

Rodrigues' rotation formula

The exponential map on se(3) is described below

$$
\begin{aligned}
& \exp \left(\boldsymbol{\xi}^{\wedge}\right)=\left[\begin{array}{cc}
\sum_{n=0}^{\infty} \frac{1}{n!}\left(\boldsymbol{\phi}^{\wedge}\right)^{n} & \sum_{n=0}^{\infty} \frac{1}{(n+1)!}\left(\boldsymbol{\phi}^{\wedge}\right)^{n} \boldsymbol{\rho} \\
\mathbf{0}^{T} & 1
\end{array}\right] \\
& \left\{\begin{array}{l}
y_{1}=f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
y_{n}=f_{n}\left(x_{1}, \ldots, x_{n}\right),
\end{array}\right. \\
& \triangleq\left[\begin{array}{cc}
\mathbf{R} & \mathbf{J} p \\
\mathbf{0}^{T} & 1
\end{array}\right]=\mathbf{T} . \\
& \mathbf{J}=\frac{\sin \theta}{\theta} \mathbf{I}+\left(1-\frac{\sin \theta}{\theta}\right) \mathbf{\mathbf { a } ^ { T }}+\frac{1-\cos \theta}{\theta} \mathbf{a}^{\wedge} \\
& \mathrm{J}\left(x_{1}, \ldots, x_{n}\right)=\left[\begin{array}{ccc}
\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial y_{n}}{\partial x_{1}} & \cdots & \frac{\partial y_{n}}{\partial x_{n}}
\end{array}\right] .
\end{aligned}
$$

Jacobian matrix
\checkmark This formula is similar to the Rodrigues formula but not exactly the same.
\checkmark After passing the exponential map, the translation part is multiplied by a linear Jacobian matrix J.

Lie Group and Lie Algebra

$>$ Definition of Lie Algebra

By courtesy of Dr. Xiang Gao (former member of our group)

Lie Group and Lie Algebra

> BCH Formula and Its Approximation
\checkmark Motivation
BCH formula is the basis of computing derivatives on so(3)
\checkmark Recap

$$
\mathbf{R}_{1}+\mathbf{R}_{2} \notin S O(3) \quad \phi_{1}+\phi_{2} \in \mathfrak{s o}(3)
$$

\checkmark Does the addition of two vectors in so(3) correspond to the product of the two matrices on SO(3)? In other words, does the following equation hold?

$$
\exp \left(\phi_{1}^{\wedge}\right) \exp \left(\phi_{2}^{\wedge}\right)=\exp \left(\left(\phi_{1}+\phi_{2}\right)^{\wedge}\right)
$$

More generally, $\quad \ln (\exp (\mathbf{A}) \exp (\mathbf{B}))=\mathbf{A}+\mathbf{B}$

Lie Group and Lie Algebra

> BCH Formula and its Approximation
\checkmark The above formula does not hold for the matrices. Is there an approximation?
\checkmark The complete form of the product is given by the Baker-Campbell-Hausdorff formula (BCH formula)

$$
\begin{gathered}
\ln (\exp (\mathbf{A}) \exp (\mathbf{B}))=\mathbf{A}+\mathbf{B} \quad \mathrm{X} \\
\ln (\exp (\mathbf{A}) \exp (\mathbf{B}))=\mathbf{A}+\mathbf{B}+\overbrace{\frac{1}{2}[\mathbf{A}, \mathbf{B}]+\frac{1}{12}[\mathbf{A},[\mathbf{A}, \mathbf{B}]]-\frac{1}{12}[\mathbf{B},[\mathbf{A}, \mathbf{B}]]+\cdots}^{\text {small terms }}, \ldots
\end{gathered}
$$

Lie Group and Lie Algebra

> BCH Formula and its Approximation
\checkmark BCH formula can be used to tackle $\exp _{\text {Small }}\left(\phi_{1}^{\wedge}\right) \exp \left(\phi_{2}^{\wedge}\right)$
perturbation
\checkmark In practice, small items can be ignored when taking derivatives. At this time, BCH has a linear approximation

$$
\begin{aligned}
& \text { Small variable on so(3) } \\
& \left.\ln \sqrt{\left(\exp \left(\phi_{1}^{\wedge}\right)\right.} \exp \left(\phi_{2}^{\wedge}\right)\right)^{\vee} \approx\left\{\begin{array}{l}
\mathbf{J}_{l}\left(\phi_{2}\right)^{-1} \phi_{1}+\phi_{2} \\
\mathbf{J}_{r}\left(\phi_{1}\right)^{-1} \phi_{2}+\phi_{1} \\
\text { whall rotation } \phi_{1} \text { is a small amount, } \\
\text { on SO(3) } \phi_{2} \text { is a small amount. }
\end{array}\right. \\
& \mathbf{J}_{l}=\mathbf{J}=\frac{\sin \theta}{\theta} \mathbf{I}+\left(1-\frac{\sin \theta}{\theta}\right) \mathbf{a a}^{T}+\frac{1-\cos \theta}{\theta} \mathbf{a}^{\wedge} \quad \begin{array}{l}
\text { Jacobian matrix } \\
\text { introduced before }
\end{array}
\end{aligned}
$$

Lie Group and Lie Algebra

$\left.\ln \exp \left(\phi_{1}^{\wedge}\right) \exp \left(\phi_{2}^{\wedge}\right)\right)^{\vee} \approx \begin{cases}\mathbf{J}_{l}\left(\phi_{2}\right)^{-1} \phi_{1}+\phi_{2} & \text { when } \phi_{1} \text { is a small amount, } \\ \mathbf{J}_{r}\left(\phi_{1}\right)^{-1} \phi_{2}+\phi_{1} & \text { when } \phi_{2} \text { is a small amount. } \\ \hline\end{cases}$
$>\mathrm{BCH}$ Formula and its Approximation
\checkmark Suppose we have a rotation R. Its corresponding Lie algebra is φ.
\checkmark We assign R a small perturbation ΔR. Its Corresponding Lie algebra is $\Delta \varphi$.
\checkmark On Lie group, the perturbation result is $\Delta \mathbf{R} \cdot \mathbf{R}$. On the Lie algebra, according to the BCH approximation, we have $\mathrm{J}_{l}^{-1}(\phi) \Delta \phi+\phi$

By combining them, we have

$$
\exp \left(\Delta \phi^{\wedge}\right) \exp \left(\boldsymbol{\phi}^{\wedge}\right)=\exp \left(\phi+\mathbf{J}_{l}^{-1}(\boldsymbol{\phi}) \Delta \boldsymbol{\phi}\right)
$$

Summary

> Motivation
> Concepts of Group
> Lie Group and Lie Algebra

Thank you for your listening!
If you have any questions, please come to me :-)

