Computer Vision II: Multiple View Geometry (IN2228)

Chapter 03 Image Formation
(Part 1 Perspective Projection)

Dr. Haoang Li

03 May 2023 12:00-13:30

Announcement before Class

Today, we will have the exercise session about Mathematical Background
\checkmark Time: from 16:00 to 18:00
\checkmark Room: 102, Hörsaal 2, "Interims I" (5620.01.102)

Explanations before Class

> Clarification of labels in semantic segmentation

Images presented in our previous class

(a) Image

(c) Instance Segmentation

(b) Semantic Segmentation

(d) Panoptic Segmentation

Different tasks

Explanations before Class

> Clarification of labels in semantic segmentation

The prediction results depend on the type of the ground truth.

An example

Neural network (a "fitter") for label prediction

For more knowledge, please attend the course "Computer Vision III: Detection, Segmentation and Tracking" provided by Dr. Nikita Araslanov

Explanations before Class

> Clarification of General Pipeline

Model selection -> Data fitting (parameter estimation)

Explanations before Class

> Clarification of General Pipeline

Model selection -> Data fitting (parameter estimation)

Today's Outline

> Recap on Digital Images
$>$ Pinhole Camera
Perspective Projection

Recap on Digital Images

> Pixel Intensity and RGB channels

Pixel intensity
RGB Channels

Recap on Digital Images

> From Light Signal to Electrical Signal
\checkmark Basic configuration

- Aperture controls the area over which light can enter your camera
- Shutter speed controls the duration of the exposure

Recap on Digital Images

> From Light Signal to Electrical Signal

\checkmark Response function
The camera response function maps the log-exposure value (scene radiance) to the intensity levels in the input images.

Response function

Photometric calibration

Pinhole Camera

> Human Eye

\checkmark The human eye is a camera

- Pupil corresponds to the "aperture" whose size is controlled by the iris
- Photoreceptor cells in the retina correspond to the "film"

Pinhole Camera

Converging Lens
\checkmark All rays parallel to the optical axis converge at the focal point

A thin converging lens focuses light onto the film

Camera and converging lens

Pinhole Camera

Pinhole Camera Model
\checkmark The relationship between the image and object

$$
-\frac{x}{X}=\frac{f}{Z} \Rightarrow x=-f \frac{X}{Z}
$$

coordinates
Similar triangle

Pinhole Camera

> Perspective Effects
\checkmark Far away objects appear smaller, with size inversely proportional to distance.

Pinhole Camera

> Perspective Effects
\checkmark Intersection of parallel lines in 2D

- Parallel lines intersect at a "vanishing point" in the image
- Vanishing points can fall both inside or outside the image
- The connection between two horizontal vanishing points is the horizon

Pinhole Camera

> Perspective Effects
\checkmark Vanishing directions

- A vanishing direction is defined by the connection between a vanishing point and camera center.
- Vanishing direction is parallel to a 3D dominant direction.
- Vanishing direction in 3D correspond to vanishing line in 2D.

Pinhole Camera

> "Front" Image Plane

For convenience, the image plane is usually represented in front of the lens, such that the image preserves the same orientation (i.e. not flipped)

Flipped image in the pinhole camera model

Illustration of virtual (upright) image plane

Pinhole Camera

> "Front" Image Plane

Illustration of image planes behind or in front of lens

Application to structure from motion (non-flipped images)

Pinhole Camera

$>$ Field of View (FOV)

\checkmark FOV is the angular portion of 3D scene seen by the camera

Illustration of FOV

Pinhole Camera

$>$ Field of View (FOV)

\checkmark FOV is inversely proportional to the focal length
Short focal length \& large FOV

400 mm

Relationship between FOV and focal length

Pinhole Camera

$>$ Field of View (FOV)

\checkmark Mathematical relation between field of view θ, image width W, and focal length f :

$$
\tan \frac{\theta}{2}=\frac{W}{2 f} \rightarrow f=\frac{W}{2}\left[\tan \frac{\theta}{2}\right]^{-1}
$$

\checkmark We can also define the FOV angle by image height.

Perspective Projection

> Recap on Homogeneous Coordinates

\checkmark For ease of computation/representation

- 3D Point

Homogencous	Cartesian
$(1,2,3)$	$\Rightarrow\left(\frac{1}{3}, \frac{2}{3}\right)$
$(2,4,6)$	$\Rightarrow\left(\frac{2}{6}, \frac{4}{6}\right)=\left(\frac{1}{3}, \frac{2}{3}\right)$
$(4,8,12)$	$\Rightarrow\left(\frac{4}{12}, \frac{8}{12}\right)=\left(\frac{1}{3}, \frac{2}{3}\right)$
\vdots	\vdots
$(1 a, 2 a, 3 a)$	$\Rightarrow\left(\frac{1 a}{3 a}, \frac{2 a}{3 a}\right)=\left(\frac{1}{3}, \frac{2}{3}\right)$

3D point

2D point

- 3D Line (Plucker Coordinates)
v: direction of 3D line (typically a unit vector)
n : normal of projection plane
$\mathbf{n}=\mathbf{Q} \times \mathbf{v}$
$\|\mathrm{n}\|=d^{*}| | \mathrm{v} \|$

Perspective Projection

> Basic Knowledge

- C: optical center, i.e., center of the lens, i.e., center of projection
- X_{c}, Y_{c}, Z_{c} : axes of the camera frame
- Z_{c} : optical axis (principal axis)
- O: principal point, i.e., intersection of optical axis and image plane

Note: principal point is not exactly the image center (will be introduced later)

Perspective Projection

> Perspective Projection vs. Parallel Projection

\checkmark Perspective Projection

- Size varies inversely with distance - looks realistic
- Parallel lines do not (in general) remain parallel
\checkmark Parallel Projection

- Good for exact measurements
- Parallel lines remain parallel
- Less realistic looking

Perspective Projection

> From Camera Frame to Image Coordinates

A 3D point $P_{\mathrm{c}}=\left[X_{c}, Y_{c}, Z_{\mathrm{c}}\right]^{\top}$ in the camera frame is projected to $p=(x, y)$ onto the image plane.

Based on similar triangles

$$
\begin{aligned}
& \frac{x}{f}=\frac{X_{c}}{Z_{c}} \Rightarrow x=\frac{f X_{c}}{Z_{c}} \\
& \frac{y}{f}=\frac{Y_{c}}{Z_{c}} \Rightarrow y=\frac{f Y_{c}}{Z_{c}}
\end{aligned}
$$

Side view of a scene

Perspective Projection

> From Image Coordinates to Pixel Coordinates

$$
\begin{aligned}
& x=\frac{f X_{c}}{Z_{c}} \\
& y=\frac{f Y_{c}}{Z_{c}}
\end{aligned}
$$

\checkmark Let $O=\left(u_{0}, v_{0}\right)$ be the pixel coordinates of the camera optical center
\checkmark Let k_{u}, k_{v} be the pixel conversion factors (conversion between mm and pixels)
Given image Coordinates ($\boldsymbol{x}, \boldsymbol{y}$), we compute the Pixel Coordinates ($\boldsymbol{u}, \boldsymbol{v}$) as

$$
\begin{aligned}
& u=u_{0}+k_{u} x \rightarrow u=u_{0}+\frac{k_{u} f X_{C}}{Z_{C}} \\
& v=v_{0}+k_{v} y \rightarrow v=v_{0}+\frac{k_{v} f Y_{C}}{Z_{C}}
\end{aligned}
$$

Perspective Projection

> From Image Coordinates to Pixel Coordinates

$$
\begin{aligned}
& u=u_{0}+k_{u} x \rightarrow u=u_{0}+\frac{k_{u} f f x_{C}}{Z_{C}} \\
& v=v_{0}+k_{v} y \rightarrow v=v_{0}+\frac{k_{u}(f) Y_{C}}{Z_{C}} \\
& u=u_{0}+k_{u} x \rightarrow u=u_{0}+\alpha_{u} \quad \text { Expressed by mm } \\
& v=v_{0}+k_{v} y \rightarrow v=v_{0}+\frac{\left.\alpha_{v}\right) x_{C}}{Z_{C}} \quad \text { (expressed in pixels) } \quad \text { Focal lengths }
\end{aligned}
$$

Image plane

Perspective Projection

> Intrinsic/Calibration Matrix

Homogeneous coordinates

$$
p=\binom{u}{v} \quad \Rightarrow \quad \tilde{p}=\lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]
$$

Matrix form of perspective projection

- Focal length $a_{u} a_{v}$
- Principal points $u_{0} v_{0}$

Not equal due to conversion factor

$$
\lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\alpha_{u} & 0 & u_{0} \\
0 & \alpha_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c}
\end{array}\right]
$$

Intrinsic/Calibration matrix

$$
\begin{aligned}
& u=u_{0}+k_{u} x \rightarrow u=u_{0}+\frac{\alpha_{u} x_{G}}{Z_{C}} \\
& v=v_{0}+k_{v} y \rightarrow v=v_{0}+\frac{\left.\alpha_{v} v\right)_{C}}{Z_{C}}
\end{aligned}
$$

Perspective Projection

> Intrinsic/Calibration Matrix

\checkmark In the past it was common to assume a skew factor in the pixel manufacturing process.
\checkmark However, the camera manufacturing process today is so good that we can safely assume skew factor $=0$ and $\alpha u=\alpha v$ (i.e., square pixels).

Square-pixels chip

Non-Square-pixels chip

Perspective Projection

> An Example of Intrinsic Parameters

Most widely-used SLAM datasets, e.g., TUM RGBD dataset provide intrinsic parameters calibrated beforehand (calibration will be introduced later).

CALIBRATION OF THE COLOR CAMERA
We computed the intrinsic parameters of the RGB camera from the rgbd_dataset_freiburg1/2_rgb_calibration.bag.

Camera	fx	fy	CX	cy	d0	d1	d2	d3	d4
(ROS default)	525.0	525.0	319.5	239.5	0.0	0.0	0.0	0.0	0.0
Freiburg 1 RGB	517.3	516.5	318.6	255.3	0.2624	-0.9531	-0.0054	0.0026	1.1633
Fex Freiburg 2 RGB	520.9	521.0	325.1	249.7	0.2312	-0.7849	-0.0033	-0.0001	0.9172
Frex Freiburg 3 RGB	535.4	539.2	320.1	247.6	0	0	0	0	0

Image resolution: 640*480 pixels

[^0]
Perspective Projection

> From World Frame to Pixel Coordinates

Coordinate systems

- Camera frame
- Image coordinates
- Pixel coordinates
- World frame

Camera parameters

- Intrinsic parameters
- Extrinsic parameters

Perspective Projection

> Projection Matrix

From the world frame to the camera frame

$$
\mathbf{X}_{C}=\mathbf{R} \mathbf{X}_{W}+\mathbf{t}
$$

Rigid transformation (extrinsic parameters)

$$
\begin{gathered}
{\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c}
\end{array}\right]=} \\
\left.\qquad \begin{array}{lll}
{\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]}
\end{array}\right]\left[\begin{array}{l}
X_{w} \\
Y_{w} \\
Z_{w}
\end{array}\right]+\left[\begin{array}{c}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right] \\
\text { Matrix form }
\end{gathered}
$$

$$
\begin{gathered}
{\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c}
\end{array}\right]=\frac{\left.\begin{array}{lll|l}
r_{11} & r_{12} & r_{13} & t_{1} \\
r_{21} & r_{22} & r_{23} & t_{2} \\
r_{31} & r_{32} & r_{33} & t_{3}
\end{array}\right] \cdot\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]}{\text { More compact form }}=\left[\begin{array}{ll}
R & T
\end{array}\right] \cdot\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]} \\
\end{gathered}
$$

Perspective Projection

> Projection Matrix

\checkmark Rigid transformation
$\left[\begin{array}{c}X_{c} \\ Y_{c} \\ Z_{c}\end{array}\right]=\left[\begin{array}{lll|l}r_{11} & r_{12} & r_{13} & t_{1} \\ r_{21} & r_{22} & r_{23} & t_{2} \\ r_{31} & r_{32} & r_{33} & t_{3}\end{array}\right] \cdot\left[\begin{array}{c}X_{w} \\ Y_{w} \\ Z_{w} \\ 1\end{array}\right]=\left[\begin{array}{ll}R & T\end{array}\right] \cdot\left[\begin{array}{c}X_{w} \\ Y_{w} \\ Z_{w} \\ 1\end{array}\right]$

Extrinsic Parameters
\checkmark Perspective projection (camera frame)

$$
\lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=K\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c}
\end{array}\right]
$$

Perspective Projection

> Computer Vision vs Computer Graphics

\checkmark Pipeline

- Transforms the view volume, i.e., the pyramidal frustum to the canonical view volume, i.e., normalized device coordinates (NDC).
- Linearly expand the XOY plane of NDC to scree/image plane.

NDC
Coordinate System

Perspective Projection

> Computer Vision vs Computer Graphics

\checkmark Step 1: Convert perspective frustum to NDC space

matrix Homogeneous coordinates
of a 3D point

Perspective Projection

> Computer Vision vs Computer Graphics

\checkmark Step 2: From NDC to screen space

Clip the content outside the NDC coordinates

Convert clipped NDC coordinates to screen coordinates

Perspective Projection

> Line Projection

\checkmark Two-step computation method

- Coordinates of 2D endpoints (homogeneous)

$$
\begin{aligned}
& \mathbf{A}^{\prime}=\mathbf{K A} \\
& \mathbf{B}^{\prime}=\mathbf{K B}
\end{aligned}
$$

Intrinsic matrix

- Coordinates of 2D line (homogeneous)

$$
l=\mathbf{A}^{\prime} \times \mathbf{B}^{\prime}
$$

Perspective Projection

Perspective Projection

> Line Projection

$\mathrm{K}=\left[\begin{array}{ccc}f_{x} & 0 & x_{0} \\ 0 & f_{y} & y_{0} \\ 0 & 0 & 1\end{array}\right]$
\checkmark One-step computation method

- Coordinates of line (homogeneous)
$\mathbf{l}=\mathcal{K} \mathbf{n}$
$\mathcal{K}=\left[\begin{array}{ccc}f_{y} & 0 & 0 \\ 0 & f_{x} & 0 \\ -f_{y} x_{0} & -f_{x} y_{0} & f_{x} f_{y}\end{array}\right]$

Intrinsic matrix for line projection

Perspective Projection

> Relationship between Points, Lines, and Planes

\checkmark Some important conclusions

- Homogenous coordinates of a plane

A four-dimensional vector $\pi=(\underbrace{(A, B, C}, D)$
 plane

Projection of black arrow onto red normal

$$
\vec{n}=[A, B, C] \quad \text { Unit vector }
$$

$$
\vec{n} \cdot \overrightarrow{P_{0} P}=0
$$

$$
[A, B, C] \cdot\left[x-x_{0}, y-y_{0}, z-z_{0}\right]=0
$$

$$
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0
$$

$$
A x+B y+C z=A x_{0}+B y_{0}+C z_{0}
$$

$$
A x+B y+C z=\bar{D}
$$

Dot product

- A point P in homogenous coordinates $(X, Y, Z, 1)$ lies on a plane

$$
\mathrm{P}^{\top} \pi=0
$$

Perspective Projection

> Relationship between Points, Lines, and Planes
\checkmark Some important conclusions

- Projection plane computed by image line

$$
\underline{\boldsymbol{\pi}}_{L}=\stackrel{4}{ }^{\mathrm{P}^{*} 3} \underline{\mathbf{l}}_{L} 3^{* 1} \in \mathbb{R}^{4}
$$

- Intersection between a 3D line and a 3D plane

$$
\begin{array}{cc}
\underline{\mathbf{D}}=\mathrm{L} \underline{\boldsymbol{\pi}} & \mathrm{~L}=\left[\begin{array}{cc}
{[\mathbf{n}]_{\times}} & \mathbf{v} \\
-\mathbf{v}^{\top} & 0
\end{array}\right]
\end{array} \begin{aligned}
& \text { 〉 } \\
& \mathcal{L}=\left(\mathbf{n}^{\top}, \mathbf{v}^{\top}\right)^{\top} \\
& \text { Homogeneous coordinates }
\end{aligned} \quad \text { Plucker matrix } \quad \begin{aligned}
& \text { Plucker coordinates }
\end{aligned}
$$

Perspective Projection

> Normalized Image

A virtual image plane with focal length equal to 1 unit and origin of the pixel coordinates at the principal point.

Normalized image plane

Perspective Projection

> Normalized Image

\checkmark Computation of normalized coordinates

$$
\left[\begin{array}{c}
\bar{u} \\
\bar{v} \\
1
\end{array}\right]=\left[\begin{array}{l}
u \\
K^{-1} \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\alpha} & 0 & -\frac{u_{0}}{\alpha} \\
0 & \frac{1}{\alpha} & -\frac{v_{0}}{\alpha} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{u-u_{0}}{\alpha} \\
\frac{v-v_{0}}{\alpha} \\
1
\end{array}\right]
$$

Perspective Projection

> Normalized Image

Multiply both terms of the perspective projection equation in camera frame coordinates by K^{-1}

Basic projection
Normalized image coordinates

Camera frame

Collinearity between 3D vectors in camera frame

Perspective Projection

> Geometric constraints of points

$$
\mathbf{a} \times \mathbf{b}=[\mathbf{a}]_{\times} \mathbf{b}=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

\checkmark Parallelism of ray directions

$$
\mathbf{d}_{i}^{\mathbf{x}} \propto \mathbf{d}_{i}^{\mathbf{X}} \Rightarrow \underset{3 \mathrm{~K} \text { vector }}{\mathbf{K}_{i}^{-1} \mathbf{x}_{i} \propto\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \mathbf{X}_{i}}
$$

$" \propto$ " represents equality regardless of scale, i.e., two vectors are parallel, which leads to the cross product of 0 .

- A 3*3 skew-symmetric matrix has the rank of 2 , so each 3D-2D point correspondence provide two constraints.

Camera frame

Perspective Projection

> Geometric constraints of lines
\checkmark Parallelism of normals of projection plane

- Similarly, 3*3 skew-symmetric matrix has the rank of 2, so each 3D-2D line correspondence provide two constraints.
- How many points and/or lines should we use to compute 6-DOF camera pose?

Camera frame

Perspective Projection

$>$ Geometric constraints of lines

\checkmark An alternative expression of line constraint

- 3D line direction is orthogonal to the normal of projection plane. (one constraint)
- The direction defined by a 3D point lying on the 3D line and the origin is orthogonal to the normal of projection plane. (one constraint)

(a)

(b)

3D-2D line correspondences $\left\{\left(\mathbf{L}_{k}, \mathbf{l}_{k}\right)\right\}_{k=1}^{3}$

Perspective Projection

> Normalized Image

\checkmark Applications to geometric constraints of lines

- Point and Line (Ray-Point-Ray Structure)

$$
\begin{gathered}
\left\{\begin{array} { l }
{ \mathbf { n } _ { x } = \mathbf { p } \times \mathbf { d } _ { x } } \\
{ \mathbf { n } _ { y } = \mathbf { p } \times \mathbf { d } _ { y } }
\end{array} \quad \left\{\begin{array}{l}
\mathbf{n}_{x}^{\prime}=\mathbf{p}^{\prime} \times \mathbf{d}_{x}^{\prime} \\
\mathbf{n}_{y}^{\prime}=\mathbf{p}^{\prime} \times \mathbf{d}_{y}^{\prime}
\end{array}\right.\right.
\end{gathered}
$$

Two-view configuration of ray-point-ray structure

$$
\left\{\begin{array}{l}
\mathbf{e}_{x} \propto \mathbf{n}_{x}^{\prime} \times \mathbf{R} \mathbf{n}_{x} \\
\mathbf{e}_{y} \propto \mathbf{n}_{y}^{\prime} \times \mathbf{R} \mathbf{n}_{y}
\end{array} \quad \measuredangle \mathbf{e}_{x}^{\top} \mathbf{e}_{y}=\underset{\substack{\cos \alpha \cdot \| \\
\text { Angle between two lines }}}{\cos \|\cdot\| \mathbf{e}_{y} \|}\right.
$$

Perspective Projection

> Spherical Projection

\checkmark Planar projection vs. spherical projection

Spherical projection has a larger FOV than planar projection

Perspective Projection

> Spherical Projection
\checkmark Obtaining a panorama with a 360 degree field of view

Omnicamera

Equirectangular panorama in a spherical projection.

Perspective Projection

> Spherical Projection

\checkmark Pipeline of spherical image generation

- Map 3D point (X, Y, Z) onto sphere

$$
(\hat{x}, \hat{y}, \hat{z})=\frac{1}{\sqrt{X^{2}+Y^{2}+Z^{2}}}(X, Y, Z)
$$

- Convert to spherical coordinates

$$
\begin{array}{ll}
r=\sqrt{x^{2}+y^{2}+z^{2}} & x=r \cos \theta \sin \phi \\
\theta=\tan ^{-1}\left(\frac{y}{x}\right) & y=r \sin \theta \sin \phi \\
\phi=\cos ^{-1}\left(\frac{z}{r}\right), & z=r \cos \phi .
\end{array}
$$

Azimuth

$$
\theta \in[0,2 \pi)
$$

Polar angle

$$
\phi \in[0, \pi]
$$

Perspective Projection

> Spherical Projection

\checkmark Pipeline of spherical image generation

- s defines size of the final imag
(often convenient to set $\mathrm{s}=$ camera focal length)

$$
\begin{aligned}
(\tilde{x}, \tilde{y}) & =(s \theta, s \phi)+\left(\tilde{x}_{c}, \tilde{y}_{c}\right) \quad \text { Displacement of origin } \\
& \text { Linear mapping }
\end{aligned}
$$

unwrapped sphere

Perspective Projection

> Spherical Projection
\checkmark Difference between latitude and polar angle

\checkmark Difference between mathematical and and physical representation

Perspective Projection

> Spherical Projection
\checkmark Cube-based representation

Inscribed sphere

Perspective Projection

> Spherical Projection

Perspective Projection

> Other Expressions of Sphere

\checkmark Spatial distortion due to equi-rectangular representation

- Yellow squares on both sides represent the same surface areas on the sphere.
- The area of Antarctica seems large.

Actual area comparison between Antarctica and Australia plus New Zealand

Perspective Projection

> Other Expressions of Sphere

\checkmark Icosahedral representation
We extrude all the vertices of icosahedron sub-faces to the unit sphere, obtaining the icosahedral spherical representation

(a)

Equi-angular discretization

(b)

Icosahedron

(c)
icosahedral spherical representation

Expansion of icosahedral sphere

Summary

$>$ Recap on Image Processing
> Pinhole Camera
Perspective Projection

Thank you for your listening!
If you have any questions, please come to me :-)

[^0]: Note that both the color and IR images of the Freiburg 3 sequences have already been undistorted, therefore the distortion parameters are all zero. The original distortion values can be found in the tgz file.

