Computer Vision II: Multiple View Geometry (IN2228)

Chapter 04 Camera Calibration

Dr. Haoang Li

10 May 2023 12:00-13:30

Announcement before Class

Today, we will have the exercise session about "Representing a Moving Scene" (Chapter 02)
\checkmark Time: from 16:00 to 18:00
\checkmark Room: 102, Hörsaal 2, "Interims I" (5620.01.102)

Explanations before Class

Normal of Projection Plane

$>$ Basic Configuration of 2D Line Detection and 3D Line Projection

Image line detection

Explanations before Class

Normal of Projection Plane

$>$ Computation Based on the Normalized Image Plane

- Two known points s' and e' in the normalized image plane.
- Their coordinates can be also treated as the directions from the camera center to these points (see yellow and green arrows)

Technische Universităt München

Explanations before Class

Normal of Projection Plane

Projection Ambiguity Problem

Explanations before Class

Normal of Projection Plane

> Reference papers
\checkmark For conclusions:
[1] Guoxuan Zhang, Jin Han Lee, Jongwoo Lim, and II Hong Suh, "Building a 3-D Line-Based Map Using Stereo SLAM", IEEE TRO, 2015.
\checkmark For derivations:
[2] A. Bartoli and P. Sturm, "The 3D line motion matrix and alignment of line reconstructions," in IEEE CVPR, 2001.
\checkmark For applications:
[3] A. Bartoli and P. Sturm, "Structure from motion using lines: Representation, triangulation and bundle adjustment," CVIU, 2005.

Clarification before Class

Reference Materials of this course

- Course "Computer Vision II" provided by Prof. Daniel Cremers

Materials: https://cvg.cit.tum.de/teaching/ss2022/mvg2022
Video: https://www.youtube.com/playlist?list=PLTBdjV_4f-EJn6udZ34tht9EVIW7Ibeo4

- Course "Vision Algorithms for Mobile Robotics" provided by Prof. Davide Scaramuzza Materials: https://rpg.ifi.uzh.ch/teaching.htm
- Book "Multiple View Geometry in Computer Vision": R. Hartley and A. Zisserman Link: https://www.robots.ox.ac.uk/~vgg/hzbook/
- Book "An Invitation to 3D Vision": Y. Ma, S. Soatto, J. Kosecka, S.S. Sastry

Link: https://www.eecis.udel.edu/~cer/arv/readings/old_mkss.pdf

- Academic papers in computer vision, robotics, and computer graphics

Dominant venues: ICCV, CVPR, ECCV, TPAMI, IJCV, TIP + IJRR, TRO, ICRA, IROS, RSS + SIGGRAPH

Today's Outline

$>$ Overview of Calibration
> Tsai's Method: From 3D Objects
> Zhang's Method: From Planar Grids
> Image Undistortion

Overview of Calibration

> Definition

\checkmark Calibration is the process to determine

- The extrinsic parameters (R, T) of a camera.
- The intrinsic parameters (K plus lens distortion)

Overview of Calibration

> Organization

\checkmark In this chapter, we will focus on "simultaneous" calibration of extrinsic and intrinsic parameters.
\checkmark Estimation of extrinsic parameters with "known" intrinsic parameters (camera localization) will be introduced in the Chapter 07 "3D-2D Geometry".

Camera localization

Overview of Calibration

$>$ Organization

\checkmark We will temporarily neglect the lens distortion and see later how it can be determined.

Overview of Calibration

> Practical Application Scenario

\checkmark We first calibrate a camera and only save its intrinsic parameters. Then we use this camera to run VO/SLAM.

Camera calibration

Overview of Calibration

> An Example of Intrinsic and Distortion Parameters

\checkmark Most widely-used SLAM datasets, e.g., TUM RGBD dataset provide intrinsic parameters calibrated beforehand (calibration will be introduced later).

CALIBRATION OF THE COLOR CAMERA

Note that both the color and IR images of the Freiburg 3 sequences have already been undistorted, therefore the distortion parameters are all zero. The original distortion values can be found in the tgz file.

Note: We recommend to use the ROS default parameter set (i.e., without undistortion), as undistortion of the preregistered depth images is not trivial.
https://cvg.cit.tum.de/data/datasets/rgbddataset/file formats

Tsai's Method: From 3D Objects

> Overview

\checkmark Tsai's method [1] consists of measuring the 3D position of $\boldsymbol{n} \geq \mathbf{6} 3 \mathrm{D}$ control points on a 3D calibration target and the 2D coordinates of their projections in the image.
\checkmark Tsai's method is based on only a single image.

Through the prior knowledge about the size of each square (e.g., 5 cm), we can obtain the coordinates of each 3D point.
[1] R. Tsai. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal of Robotics and Automation, 3(4):323-344, 1987.

Tsai's Method: From 3D Objects

> Solving Problem Based on DLT

\checkmark Direct linear transform (DLT) rewrites the perspective projection equation below as a homogeneous linear equation and solves it by standard methods.

Tsai's Method: From 3D Objects

> Solving Problem Based on DLT

\checkmark Rewrite the perspective equation for a generic 3D-2D point correspondence

$$
\lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\alpha_{u} & 0 & u_{0} \\
0 & \alpha_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & t_{1} \\
r_{21} & r_{22} & r_{23} & t_{2} \\
r_{31} & r_{32} & r_{33} & t_{3}
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right] \Rightarrow \lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\alpha_{u} r_{11}+u_{0} r_{31} & \alpha_{u} r_{12}+u_{0} r_{32} & \alpha_{u} r_{13}+u_{0} r_{33} & \alpha_{u} t_{1}+u_{0} t_{3} \\
\alpha_{v} r_{21}+v_{0} r_{31} & \alpha_{v} r_{22}+v_{0} r_{32} & \alpha_{v} r_{23}+v_{0} r_{33} & \alpha_{v} t_{2}+v_{0} t_{3} \\
r_{31} & r_{32} & r_{33} & t_{3}
\end{array}\right] \cdot\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
$$

$$
\Rightarrow \lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34}
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
$$

We first compute this matrix as a whole and decompose it back into intrinsic and extrinsic matrices later

Tsai's Method: From 3D Objects

> Solving Problem Based on DLT
\checkmark Rewrite the perspective equation for a generic 3D-2D point correspondence

$$
\begin{aligned}
& \lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34}
\end{array}\right] \cdot\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right] \Rightarrow \lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=M \cdot\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right] \\
& \Rightarrow \lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{c}
m_{1}^{\mathrm{T}} \\
m_{2}^{\mathrm{T}} \\
m_{3}^{\mathrm{T}}
\end{array}\right] \cdot\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right] \quad \text { where } m_{i}^{\mathrm{T}} \text { is the } i \text {-th row of } \mathrm{M}
\end{aligned}
$$

Tsai's Method: From 3D Objects

> Solving Problem Based on DLT
\checkmark Conversion back from homogeneous coordinates to pixel coordinates leads to
$\Rightarrow \lambda\left[\begin{array}{c}u \\ v \\ 1\end{array}\right]=\left[\begin{array}{c}m_{1}^{\mathrm{T}} \\ m_{2}^{\mathrm{T}} \\ m_{3}^{\mathrm{T}}\end{array}\right] \cdot\left[\begin{array}{c}X_{w} \\ Y_{w} \\ Z_{w} \\ 1\end{array}\right] \rightarrow P \quad\left[\begin{array}{l}u=\frac{\lambda u}{\lambda}=\frac{m_{1}^{\mathrm{T}} \cdot P}{m_{3}^{\mathrm{T}} \cdot P} \\ v=\frac{\lambda v}{\lambda}=\frac{m_{2}^{\mathrm{T}} \cdot P}{m_{3}^{\mathrm{T}} \cdot P}\end{array} \Rightarrow \begin{array}{l}\left(m_{1}^{\mathrm{T}}-u_{i} m_{3}^{\mathrm{T}}\right) \cdot P=0 \\ \left(m_{2}^{\mathrm{T}}-v_{i} m_{3}^{\mathrm{T}}\right) \cdot P=0\end{array}\right.$
Divided by scale λ

Tsai's Method: From 3D Objects

> Solving Problem Based on DLT
Linear system w.r.t. the elements of unknown M matrix
\checkmark By re-arranging the terms, we obtain
Known coefficient matrix

$$
\begin{aligned}
& \left(m_{1}^{\mathrm{T}}-u_{i} m_{3}^{\mathrm{T}}\right) \cdot P=0 \\
& \left(m_{2}^{\mathrm{T}}-v_{i} m_{3}^{\mathrm{T}}\right) \cdot P=0
\end{aligned} \Rightarrow\left(\begin{array}{ccc}
P_{1}^{\mathrm{T}} & 0^{\mathrm{T}} & -u_{1} P^{\mathrm{T}} \\
0^{\mathrm{T}} & P_{1}^{\mathrm{T}} & -v_{1} P^{\mathrm{T}}
\end{array}\right)\left(\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right)=\binom{0}{0}
$$

\checkmark For n points, we can stack all these equations into a big matrix

$$
\left(\right)\left(\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right)
$$

Tsai's Method: From 3D Objects

> Solving Problem Based on DLT
\checkmark Final homogenous linear system

Tsai's Method: From 3D Objects

> Solving Problem Based on DLT

$$
\Rightarrow \lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34}
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
$$

\checkmark Solving the linear system

Minimal solution

- $Q(2 n \times 12)$ should have rank 11 to have a unique (up-to-scale) non-zero solution of vector M.
- Dimension of null space is 1 . Vector M can be expressed by a basis vector multiplied by an arbitrary scalar.
- Because each 3D-to-2D point correspondence provides 2 independent equations, then 6 (5.5 in theory) point correspondences are needed.

Tsai's Method: From 3D Objects

> Solving Problem Based on DLT
\checkmark Solving the linear system

Over-determined solution

- For $n \geq 6$ points, a solution is the Least-Squares solution, which minimizes the sum of squared residuals, $\|Q M\|^{2}$, subject to the constraint $\|M\|^{2}=1$ (explain this constraint later).
- It can be solved through Singular Value Decomposition (SVD).

Tsai's Method: From 3D Objects

> Solving Problem Based on DLT
\checkmark Solving the linear system

$$
\mathrm{Q} \cdot \mathrm{M}=0
$$

- Why do we need to add the constraint $\|M\|^{2}=1$? Zero vector is an obvious solution.
- How can we apply SVD to computing least-squares solution?

$$
\begin{array}{cl}
\arg \min _{b} & \|A b\|_{2}^{2} \\
\text { subject to } & \|b\|_{2}=1
\end{array} \quad \mathbf{A}=\mathbf{U} \mathbf{\Sigma} \mathbf{V} \quad \begin{aligned}
& \text { Optimal solution } \mathrm{b}^{*} \text { is the column of } \mathrm{V} \\
& \text { corresponding to the smallest singular value. }
\end{aligned}
$$

Tsai's Method: From 3D Objects

> Camera Parameter Recovery

$$
\lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\alpha_{u} & 0 & u_{0} \\
0 & \alpha_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & t_{1} \\
r_{21} & r_{22} & r_{23} & t_{2} \\
r_{31} & r_{32} & r_{33} & t_{3}
\end{array}\right] \cdot\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
$$

\checkmark Recover the intrinsic and extrinsic parameters
Recap on definition of M matrix

$$
\begin{gathered}
\text { known } \quad \mathbf{M}]=\mathbf{K}(\mathbf{R} \mid \mathrm{T}) \\
{\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34}
\end{array}\right]=\left[\begin{array}{ccc}
\alpha_{u} & 0 & u_{0} \\
0 & \alpha_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & t_{1} \\
r_{21} & r_{22} & r_{23} & t_{2} \\
r_{31} & r_{32} & r_{33} & t_{3}
\end{array}\right]} \\
{\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34}
\end{array}\right]=\left[\begin{array}{cccc}
\alpha r_{11}+u_{0} r_{31} & \alpha r_{12}+u_{0} r_{32} & \alpha r_{13}+u_{0} r_{33} & \alpha t_{1}+u_{0} t_{3} \\
\alpha r_{21}+v_{0} r_{31} & \alpha r_{22}+v_{0} r_{32} & \alpha r_{23}+v_{0} r_{33} & \alpha t_{2}+v_{0} t_{3} \\
r_{31} & r_{32} & r_{33} & t_{3}
\end{array}\right]}
\end{gathered}
$$

Tsai's Method: From 3D Objects

Camera Parameter Recovery

\checkmark Enforcing the orthogonality constraint

- We are not enforcing the constraint that \boldsymbol{R} is orthogonal, i.e., $\boldsymbol{R} \cdot \boldsymbol{R}^{\boldsymbol{T}}=\boldsymbol{I}$
- We can use the so-called QR factorization of \boldsymbol{M}, which decomposes \boldsymbol{M} into a R (orthogonal), T, and an upper triangular matrix (i.e., K)
- Orthogonality is inherently satisfied

$$
Q^{\top}=Q^{-1}
$$

$$
\text { - }=\mathbf{Q} \mathbf{R}\left[\begin{array}{ccccc}
u_{1,1} & u_{1,2} & u_{1,3} & \cdots & u_{1, n} \\
& u_{2,2} & u_{2,3} & \cdots & u_{2, n} \\
& & \ddots & \ddots & \vdots \\
& & & \ddots & u_{n-1, n} \\
0 & & & & u_{n, n}
\end{array}\right] \quad \text {, } \quad \text {. } \quad \text { Case of non-square matrix }
$$

Tsai's Method: From 3D Objects

> Practical Setup

\checkmark Use many more than 6 points (ideally more than 20) and non coplanar.
\checkmark Corners can be detected with accuracy < 0.1 pixels (will be introduced in Chapter 05 "Correspondence Estimation").

Keypoint detection

Distortion can be also considered

Zhang's Method: From Planar Grids

- A Simpler Setup

\checkmark Zhang's method [2] relies on 3D coplanar points.

A single image

Multiview images

Tsai calibration object (left), Zhang calibration object (right)
[2] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000.

Zhang's Method: From Planar Grids

> Solving Problem based on DLT
\checkmark As in Tsai's method, we start by neglecting the radial distortion.
\checkmark Zhang's method the points are all coplanar, i.e., $\boldsymbol{Z}_{w}=0$.

$$
\begin{gathered}
\lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=K[R \mid T] \cdot\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
0 \\
1
\end{array}\right] \Rightarrow \\
\Rightarrow \lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\alpha_{u} & 0 & u_{0} \\
0 & \alpha_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & t_{1} \\
r_{21} & r_{22} & r_{23} & t_{2} \\
r_{31} & r_{32} & r_{33} & t_{3}
\end{array}\right] \cdot\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
0 \\
1
\end{array}\right]
\end{gathered}
$$

 world frame

Zhang's Method: From Planar Grids

> Solving Problem based on DLT
\checkmark Rewriting Equations

$$
\begin{aligned}
& \Rightarrow \lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\alpha_{u} & 0 & u_{0} \\
0 & \alpha_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ll|l|}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
t_{2} \\
r_{31} & r_{32} & r_{33}
\end{array} t_{3}\right] \cdot\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
0 \\
\hline 1
\end{array}\right] \\
& \Rightarrow \lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\alpha_{u} & 0 & u_{0} \\
0 & \alpha_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
r_{11} & r_{12} & t_{1} \\
r_{21} & r_{22} & t_{2} \\
r_{31} & r_{32} & t_{3}
\end{array}\right] \cdot\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
1
\end{array}\right] \Rightarrow \lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right] \cdot\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
1
\end{array}\right]
\end{aligned}
$$

Zhang's Method: From Planar Grids

> Solving Problem based on DLT
\checkmark Rewriting Equations

$$
\begin{aligned}
& \Rightarrow \lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right] \cdot\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
1
\end{array}\right] \Rightarrow \lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=H \cdot\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
1
\end{array}\right] \\
& \Rightarrow \lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{c}
h_{1}^{\mathrm{T}} \\
h_{2}^{\mathrm{T}} \\
h_{3}^{\mathrm{T}}
\end{array}\right] \cdot\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
1
\end{array}\right] \\
& \text { This matrix is called } \\
& \text { Homography } \\
& \Rightarrow \lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{c}
h_{1}^{\mathrm{T}} \\
h_{2}^{\mathrm{T}} \\
h_{3}^{\mathrm{T}}
\end{array}\right] \cdot\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
1
\end{array}\right] \longrightarrow P
\end{aligned}
$$

where h_{i}^{T} is the i-th row of H

Zhang's Method: From Planar Grids

> Solving Problem based on DLT
\checkmark Conversion back from homogeneous coordinates to pixel coordinates

$$
\Rightarrow \lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{c}
h_{1}^{\mathrm{T}} \\
h_{2}^{\mathrm{T}} \\
h_{3}^{\mathrm{T}}
\end{array}\right] \cdot\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
1
\end{array}\right] \rightarrow P \quad \begin{aligned}
& u=\frac{\lambda u}{\lambda}=\frac{h_{1}^{\mathrm{T}} \cdot P}{h_{3}^{\mathrm{T}} \cdot P} \\
& v=\frac{\lambda v}{\lambda}=\frac{h_{2}^{\mathrm{T}} \cdot P}{\boldsymbol{h}^{\mathrm{T}} \cdot P}
\end{aligned} \Rightarrow \quad \begin{aligned}
& \left(h_{1}^{\mathrm{T}}-u_{i} h_{3}^{\mathrm{T}}\right) \cdot P_{i}=0 \\
& \left(h_{2}^{\mathrm{T}}-v_{i} h_{3}^{\mathrm{T}}\right) \cdot P_{i}=0
\end{aligned}
$$

Homogeneous coordinates

Pixel coordinates

The i-th observed 3D-
2D correspondence

Zhang's Method: From Planar Grids

> Solving Problem based on DLT
\checkmark Re-arranging the terms

$$
\begin{aligned}
& \left(h_{1}^{\mathrm{T}}-u_{i} h_{3}^{\mathrm{T}}\right) \cdot P_{i}=0 \\
& \left(h_{2}^{\mathrm{T}}-v_{i} h_{3}^{\mathrm{T}}\right) \cdot P_{i}=0
\end{aligned} \quad \Rightarrow \begin{aligned}
& P_{i}^{\mathrm{T}} \cdot h_{1}+0 \cdot h_{2}^{\mathrm{T}}-u_{i} P_{i}^{\mathrm{T}} \cdot h_{3}^{\mathrm{T}}=0 \\
& 0 \cdot h_{1}^{\mathrm{T}}+P_{i}^{\mathrm{T}} \cdot h_{2}^{\mathrm{T}}-v_{i} P_{i}^{\mathrm{T}} \cdot h_{3}^{\mathrm{T}}=0
\end{aligned} \quad \Rightarrow\left(\begin{array}{ccc}
P_{i}^{\mathrm{T}} & 0^{\mathrm{T}} & -u_{1} P_{i}^{\mathrm{T}} \\
0^{\mathrm{T}} & P_{i}^{\mathrm{T}} & -v_{1} P_{i}^{\mathrm{T}}
\end{array}\right)\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right)=\binom{0}{0}
$$

Linear system w.r.t. elements of homography

Zhang's Method: From Planar Grids

> Solving Problem based on DLT
\checkmark For n points (from a single view), we can stack all these equations into a big matrix

$$
\left(\begin{array}{ccc}
\left(\begin{array}{ccc}
P_{1}^{\mathrm{T}} & 0^{\mathrm{T}} & -u_{1} P_{1}^{\mathrm{T}} \\
0^{\mathrm{T}} & P_{1}^{\mathrm{T}} & -v_{1} P_{1}^{\mathrm{T}} \\
\ldots & \ldots & \cdots \\
P_{n}^{\mathrm{T}} & 0^{\mathrm{T}} & -u_{n} P_{n}^{\mathrm{T}} \\
0^{\mathrm{T}} & P_{n}^{\mathrm{T}} & -v_{n} P_{n}^{\mathrm{T}}
\end{array}\right) \\
\underbrace{\left(h_{1}\right.}_{\mathrm{Q} \text { (this matrix is known) } \mathrm{H} \text { (this matrix is unknown) }} \begin{array}{l}
h_{2} \\
h_{3}
\end{array})
\end{array}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right) \Rightarrow \mathrm{Q} \cdot \mathrm{H}=\mathbf{0}\right.
$$

Zhang's Method: From Planar Grids

> Solving Problem based on DLT
\checkmark Solving the linear system
This matrix is called
Homography
Scale does not matter

$$
\mathrm{Q} \cdot \mathrm{H}=0
$$

Minimal solution

- $Q(2 n \times 9)$ should have rank 8 to have a unique (up to a scale) non-trivial solution H (properties of Homography will be introduced in the future)
- Each point correspondence provides 2 independent equations
- Thus, a minimum of 4 non-collinear points is required

Zhang's Method: From Planar Grids

> Solving Problem based on DLT
\checkmark Solving the linear system

$$
\mathrm{Q} \cdot \mathrm{H}=0
$$

Solution for $n \geq 4$ points

- It can be solved through Singular Value Decomposition (SVD) (same considerations as before)

$$
\begin{aligned}
\underset{b}{\arg \min } & \|A b\|_{2}^{2} \\
\text { subject to } & \|b\|_{2}=1
\end{aligned} \quad \mathbf{A}=\mathbf{U} \mathbf{\Sigma} \mathbf{V} \quad \begin{aligned}
& \text { Optimal solution } \mathrm{b}^{*} \text { is the column of } \mathrm{V} \\
& \text { corresponding to the smallest singular } \\
& \text { value. }
\end{aligned}
$$

Zhang's Method: From Planar Grids

> Camera Parameter Recovery: Overview

$\checkmark K, R, T$ can be recovered by decomposition of H
$\frac{\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]=\left[\begin{array}{ccc}\alpha_{u} & 0 & u_{0} \\ 0 & \alpha_{v} & v_{0} \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{lll}r_{11} & r_{12} & t_{1} \\ r_{21} & r_{22} & t_{2} \\ r_{31} & r_{32} & t_{3}\end{array}\right]}{\text { Up to scale }}$

Can we still use QR decomposition? No. Upper triangular matrix * orthogonal matrix

- Different from Tsai's method, the decomposition of H into K, R, T requires multiple views (introduced later).
- In practice the more views the better, e.g., 20-50 views spanning the entire field of view of the camera for the best calibration results.

Zhang's Method: From Planar Grids

> Camera Parameter Recovery: Overview
$\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]=\left[\begin{array}{ccc}\alpha_{u} & 0 & u_{0} \\ 0 & \alpha_{v} & v_{0} \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{lll}r_{11} & r_{12} & t_{1} \\ r_{21} & r_{22} & t_{2} \\ r_{31} & r_{32} & t_{3}\end{array}\right]$
\checkmark Each view j has a different homography H^{j} (and so a different R^{j} and T^{j}). However, \boldsymbol{K} is the same for all views*.
\checkmark Estimate the homography H_{i} for each i-th view using the DLT algorithm.

$$
\left[\begin{array}{ccc}
h_{11}^{j} & h_{12}^{j} & h_{13}^{j} \\
h_{21}^{j} & h_{22}^{j} & h_{23}^{j} \\
h_{31}^{j} & h_{33}^{j} & h_{33}^{j}
\end{array}\right]=\left[\begin{array}{ccc}
\alpha_{u} & 0 & u_{0} \\
0 & \alpha_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
r_{11}^{j} & r_{12}^{j} & t_{1}^{j} \\
r_{21}^{j} & r_{22}^{j} & t_{2}^{j} \\
r_{31}^{j} & r_{32}^{j} & t_{3}^{j}
\end{array}\right]
$$

Each view corresponds to a homography

[^0]
Zhang's Method: From Planar Grids

$>$

Camera Parameter Recovery: Details

$$
H=\left[\begin{array}{ll}
\mathbf{h}_{1} & \mathbf{h}_{2}
\end{array}\right.
$$

$$
\left.\mathbf{h}_{3}\right]=s M\left[\begin{array}{lll}
r_{1} & r_{2} & t
\end{array}\right]
$$

\checkmark First step: Determine intrinsic matrix M of camera from a set of known homographies.

- Idea: Use the prior constraints of rotation to derive formulas w.r.t. only unknown intrinsic parameters.
- We first express columns of rotation by unknown intrinsic parameters

$$
\begin{aligned}
r_{1}=\lambda M^{-1} h_{1} & r_{2}=\lambda M^{-1} h_{2}
\end{aligned} \quad t=\lambda M^{-1} h_{3} \quad \lambda=s^{-1}
$$

Zhang's Method: From Planar Grids

> Camera Parameter Recovery: Details

$$
H=\left[\begin{array}{ll}
\mathbf{h}_{1} & \mathbf{h}_{2}
\end{array}\right.
$$

\checkmark First step: Determine intrinsic matrix M of camera from a set of known homographies.

- We then enforce the constraints of columns w.r.t. rotation

First constraint w.r.t. only M

Second constraintw.r.t. only M

$$
\left\|r_{1}\right\|=\| \|_{2} \|=1 \longrightarrow r_{1}^{T} r_{1}=r_{2}^{T} r_{2} \frac{r_{1}=\lambda M^{-1} h_{1}}{r_{2}=\lambda M^{-1} h_{2}} h_{1}^{\sqrt{2}}\left(M^{-1}\right)^{T} M^{-1} h_{1}=h_{2}^{2}{\left(M^{-1}\right)^{T} M^{-1} / h_{2}}^{2}
$$

Zhang's Method: From Planar Grids

> Camera Parameter Recovery: Details
\checkmark First step: Determine intrinsic matrix M of camera from a set of known homographies.

- We define a matrix B w.r.t. the unknown intrinsic parameters of M
- Instead of directly solving M, we firsts estimate B

$$
h_{1}^{T}\left(M^{-1}\right)^{T} M^{-1} h_{2}=0
$$

A symmetric matrix (6 elements to estimate)

$$
h_{1}^{2}\left(M^{-1}\right)^{T} M^{-1} h_{1}=h_{2}^{2}\left(M^{-1}\right)^{T} M^{-1} / h_{2}
$$

Example: B11 is w.r.t. the focal length

- If we solved matrix B based on Homography, we can extract intrinsic parameters from B

Zhang's Method: From Planar Grids

> Camera Parameter Recovery: Details
\checkmark First step: Determine intrinsic matrix M of camera from a set of known homographies.

- Each homography $H_{i} \sim K^{*}\left[\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \boldsymbol{t}\right]$ provides two linear equations in the 6 entries of the matrix $B=\left(M^{-1}\right)^{T} M^{-1}$

$$
h_{1}^{T}\left(M^{-1}\right)^{T} M^{-1} h_{2}=0
$$

Vectors h 1 and h 2 are known

$$
h_{i}^{T} B h_{j}=\left[\begin{array}{c}
h_{1} h_{11} \\
h_{i 1} h_{j 2}+h_{i 2} h_{j 1} \\
h_{i 2} h_{j 2} \\
h_{1} h_{j 1}+h_{i 2} h_{j 3} \\
h_{13} h_{j 2}+h_{i 2} h_{j 3} \\
h_{i 3} h_{j 3}
\end{array}\right]^{T}\left[\begin{array}{c}
B_{11} \\
B_{12} \\
B_{22} \\
B_{13} \\
B_{23} \\
B_{33}
\end{array}\right]
$$

- Stack 2 N equations from N views, to yield a linear system $\mathrm{Ab}=\mathbf{0}$. Solve for b (i.e., B) using the Singular Value Decomposition (SVD).
- Typically, we need more than 3 views (each view provides two constraints).

Zhang's Method: From Planar Grids

> Camera Parameter Recovery: Details

\checkmark Second step: The extrinsic parameters for each view can be computed using M:

- Compute each column

$$
\begin{array}{ll}
\hline r_{1}=\lambda M^{-1} h_{1} & r_{2}=\lambda M^{-1} h_{2} \\
r_{3}=r_{1} \times r_{2} & t=\lambda M^{-1} h_{3} \\
\hline
\end{array}
$$

$$
\begin{gathered}
\left\|r_{1}\right\|=\left\|\lambda M^{-1} h_{1}\right\|=1 \\
\text { Constraint on scale }
\end{gathered}
$$

- Finally, build $R_{i}=\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \boldsymbol{r}_{3}\right)$ and enforce rotation matrix constraints.

Projecting the result from the matrix space onto the SO(3) manifold

Image Undistortion

> Recap on Type of Distortion

\checkmark Radial Distortion occurs when light rays bend more near the edges of a lens than they do at its optical center.
\checkmark Tangential Distortion: if the lens is misaligned (not perfectly parallel to the image sensor), a tangential distortion occurs.

Image Undistortion

> Introducing Distortion Model into Perspective Projection
\checkmark From world frame to camera frame

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=R\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]+t
$$

\checkmark From camera frame to image (distortion-free case)

$$
\begin{aligned}
& x^{\prime}=x / z \\
& y^{\prime}=y / z \\
u= & f_{x} * x^{\prime}+c_{x} \\
v= & f_{y} * y^{\prime}+c_{y} \quad \text { (Non-homogenous coordinates) }
\end{aligned}
$$

Image Undistortion

> Introducing Distortion Model into Perspective Projection

\checkmark Adding the distortion coefficients

- k_{n} coefficients will describe radial distortion
- p_{n} coefficients will describe tangential distortion

This expression is not unique

$$
\begin{gathered}
x^{\prime}=x / z \\
y^{\prime}=y / z \\
u=f_{x} * x^{\prime}+c_{x} \\
v=f_{y} * y^{\prime}+c_{y} \\
\hline
\end{gathered}
$$

Distortion-free model

$$
\begin{aligned}
& \quad x^{\prime \prime}=x^{\prime} \frac{1+k_{1} r^{2}+k_{2} r^{4}+k_{3} r^{6}}{1+k_{4} r^{2}+k_{5} r^{4}+k_{6} r^{6}}+2 p_{1} x^{\prime} y^{\prime}+p_{2} \\
& y^{\prime \prime}=y^{\prime} \frac{1+k_{1} r^{2}+k_{2} r^{4}+k_{3} r^{6}}{1+k_{4} r^{2}+k_{5} r^{4}+k_{6} r^{6}}+p_{1}\left(r^{2}+2 y^{\prime 2}\right)+2 p_{2} x^{\prime} y^{\prime} \\
& \quad \text { where } \quad r^{2}=x^{\prime 2}+y^{\prime 2} \\
& \text { Distortion model }
\end{aligned}
$$

$$
\begin{aligned}
& u=f_{x} * x^{\prime \prime}+c_{x} \\
& v=f_{y} * y^{\prime \prime}+c_{y}
\end{aligned}
$$

Image Undistortion

> Joint Estimation

Given the object points and image points (detected chessboard corners), we conduct the following steps (Zhang's method).

- Compute the initial intrinsic parameters. The distortion coefficients are all set to zeros initially.
- Estimate the initial extrinsic parameters as if the intrinsic parameters have been already known.
- Run the gradient descent algorithm to minimize the reprojection error to jointly optimize/estimate intrinsic, extrinsic, and distortion parameters.

Image Undistortion

> Joint Estimation

Reprojection error is the Euclidean distance (in pixels) between an observed image point and the corresponding 3D point reprojected onto the camera frame.

Image Undistortion

> Joint Estimation

The calibration parameters K, R, T determined by the DLT can be refined by minimizing the following cost/objective function

$$
\begin{gathered}
K, R, T, \text { lens distortion }= \\
\operatorname{argmin}_{K, k_{1}, R, T} \sum_{i=1}^{n}\left\|p^{i}-\pi\left(P_{W}^{i}, K, k_{1}, R, T\right)\right\|^{2}
\end{gathered}
$$

Image Undistortion

> Joint Estimation

$$
\begin{gathered}
K, R, T, \text { lens distortion }= \\
\operatorname{argmin}_{K, k_{1}, R, T} \sum_{i=1}^{n}\left\|p^{i}-\pi\left(P_{W}^{i}, K, k_{1}, R, T\right)\right\|^{2}
\end{gathered}
$$

The cost function can be minimized using gradient descent algorithm (details will be introduced in Chapter 11: Bundle Adjustment and Optimization).

Derivative computation

Image Undistortion

> Joint Estimation

$$
\begin{gathered}
K, R, T, \text { lens distortion }= \\
\operatorname{argmin}_{K, k_{1}, R, T} \sum_{i=1}^{n}\left\|p^{i}-\pi\left(P_{W}^{i}, K, k_{1}, R, T\right)\right\|^{2}
\end{gathered}
$$

The cost function can be minimized using gradient descent algorithm (details will be introduced in Chapter 11: Bundle Adiustment and Optimization).

Image Undistortion

> Line-based Undistortion

If we only have a single image obtained in a Man-made environment (Manhattan world), can we still manage to undistort an image?

	Constraint	Parameters to estimate
Multiple images with points	Multi-view constraint	Intrinsic parameters Distortion parameters Extrinsic parameters
Single image with lines in Manhattan world	Structural regularity constraint	Intrinsic parameters Distortion parameters Vanishing points

Manhattan world

Image Undistortion

> Line-based Undistortion
\checkmark Recap on explicit distortion model
We use the explicit model with respect to a single radial distortion parameter r (instead of the polynomial model) to convert the distorted point $\left(x^{\prime}, y^{\prime}\right)$ to the original point (x, y)

$$
\left\{\begin{array}{c}
x^{\prime}=c_{x}+\left(x-c_{x}\right) \cdot \frac{\sqrt{1+4 \cdot r \cdot d}-1}{2 \cdot r \cdot d} \\
y^{\prime}=c_{y}+\left(y-c_{y}\right) \cdot \frac{\sqrt{1+4 \cdot r \cdot d}-1}{2 \cdot r \cdot d} \\
d=\left(x-c_{x}\right)^{2}+\left(y-c_{y}\right)^{2}
\end{array}\right.
$$

Image Undistortion

> Line-based Undistortion

We leverage the fact that reliable calibration (intrinsic+distortion) parameters lead to the vanishing points maximizing the number of inlier lines.

Vanishing point estimation

Image Undistortion

> Line-based Undistortion

We aim to find the optimal calibration parameters to estimate vanishing points that maximize the number of inlier lines.

Summary

> Overview of Calibration
> Tsai's Method: From 3D Objects
> Zhang's Method: From Planar Grids
> Image Undistortion

Thank you for your listening!
If you have any questions, please come to me :-)

[^0]: * In our slides, we also denote intrinsic matrix by M.

