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Today, we will have the exercise session about “Representing a Moving 
Scene” (Chapter 02)

 Time: from 16:00 to 18:00
 Room: 102, Hörsaal 2, "Interims I" (5620.01.102)

Announcement before Class
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Normal of Projection Plane

 Basic Configuration of 2D Line Detection and 3D Line Projection

Explanations before Class
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Normal of Projection Plane

 Computation Based on the Normalized Image Plane

Explanations before Class
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Normal of Projection Plane

 Projection Ambiguity Problem

Explanations before Class
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Normal of Projection Plane

 Reference papers

 For conclusions: 
[1] Guoxuan Zhang, Jin Han Lee, Jongwoo Lim, and Il Hong Suh, “Building a 3-D Line-Based Map Using Stereo 
SLAM”, IEEE TRO, 2015.

 For derivations:
[2] A. Bartoli and P. Sturm, “The 3D line motion matrix and alignment of line reconstructions,” in IEEE CVPR, 
2001.

 For applications:
[3] A. Bartoli and P. Sturm, “Structure from motion using lines: Representation, triangulation and bundle 
adjustment,” CVIU, 2005.

Explanations before Class
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Reference Materials of this course

• Course “Computer Vision II” provided by Prof. Daniel Cremers
Materials: https://cvg.cit.tum.de/teaching/ss2022/mvg2022
Video: https://www.youtube.com/playlist?list=PLTBdjV_4f-EJn6udZ34tht9EVIW7lbeo4

• Course “Vision Algorithms for Mobile Robotics” provided by Prof. Davide Scaramuzza
Materials: https://rpg.ifi.uzh.ch/teaching.html

• Book “Multiple View Geometry in Computer Vision”: R. Hartley and A. Zisserman
Link: https://www.robots.ox.ac.uk/~vgg/hzbook/

• Book “An Invitation to 3D Vision”: Y. Ma, S. Soatto, J. Kosecka, S.S. Sastry
Link: https://www.eecis.udel.edu/~cer/arv/readings/old_mkss.pdf

• Academic papers in computer vision, robotics, and computer graphics
Dominant venues: ICCV, CVPR, ECCV, TPAMI, IJCV, TIP + IJRR, TRO, ICRA, IROS, RSS + SIGGRAPH

Clarification before Class

https://cvg.cit.tum.de/teaching/ss2022/mvg2022
https://www.youtube.com/playlist?list=PLTBdjV_4f-EJn6udZ34tht9EVIW7lbeo4
https://rpg.ifi.uzh.ch/teaching.html
https://www.robots.ox.ac.uk/%7Evgg/hzbook/
https://www.eecis.udel.edu/%7Ecer/arv/readings/old_mkss.pdf
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 Overview of Calibration
 Tsai’s Method: From 3D Objects
 Zhang’s Method: From Planar Grids
 Image Undistortion

Today’s Outline

01/48



Computer Vision Group

 Definition

 Calibration is the process to determine 
• The extrinsic parameters (𝑅𝑅, 𝑇𝑇) of a camera. 
• The intrinsic parameters (𝐾𝐾 plus lens distortion) 

Overview of Calibration

K: Intrinsic/Calibration matrix

Point in the 
camera frame

Point in the 
camera frame

Extrinsic matrix
02/48
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 Organization

 In this chapter, we will focus on “simultaneous” calibration of extrinsic and intrinsic 
parameters.

 Estimation of extrinsic parameters with “known” intrinsic parameters (camera localization) 
will be introduced in the Chapter 07 “3D-2D Geometry”.

Overview of Calibration

Camera calibration Camera localization
03/48
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 Organization

 We will temporarily neglect the lens distortion and see later how it can be determined.

Overview of Calibration

Image UndistortionImage distortion
04/48
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 Practical Application Scenario

 We first calibrate a camera and only save its intrinsic parameters. Then we use this 
camera to run VO/SLAM.

Overview of Calibration

Camera calibration

Intrinsic parameters

Extrinsic parameters of 
image(s) of chessboard

Extrinsic parameters of 
images in VO/SLAM

05/48
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 An Example of Intrinsic and Distortion Parameters

 Most widely-used SLAM datasets, e.g., TUM RGBD dataset provide intrinsic parameters 
calibrated beforehand (calibration will be introduced later).

Image resolution: 640*480 pixels

https://cvg.cit.tum.de/data/datasets/rgbd-
dataset/file_formats

Overview of Calibration

06/48

https://cvg.cit.tum.de/data/datasets/rgbd-dataset/file_formats
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 Overview

 Tsai’s method [1] consists of measuring the 3D position of 𝒏𝒏 ≥ 𝟔𝟔 3D control points on a 
3D calibration target and the 2D coordinates of their projections in the image.  

 Tsai’s method is based on only a single image.

Tsai’s Method: From 3D Objects

[1] R. Tsai. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and 
lenses. IEEE Journal of Robotics and Automation, 3(4):323–344, 1987.

Through the prior knowledge about the size of 
each square (e.g., 5 cm), we can obtain the 
coordinates of each 3D point.

07/48
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 Solving Problem Based on DLT

 Direct linear transform (DLT) rewrites the perspective projection equation below as a 
homogeneous linear equation and solves it by standard methods.

Tsai’s Method: From 3D Objects

Intrinsic matrix
(unknown)

Extrinsic matrix
(unknown)

Known (measured) 3D point 
coordinates in the world frameKnown (measured) 2D 

projection coordinates

08/48
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 Solving Problem Based on DLT

 Rewrite the perspective equation for a generic 3D-2D point correspondence

Tsai’s Method: From 3D Objects

We first compute this matrix as a 
whole and decompose it back into 

intrinsic and extrinsic matrices later
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 Solving Problem Based on DLT

 Rewrite the perspective equation for a generic 3D-2D point correspondence

where 𝑚𝑚𝑖𝑖
T is the 𝑖𝑖-th row of M

Tsai’s Method: From 3D Objects

10/48



Computer Vision Group

 Solving Problem Based on DLT

 Conversion back from homogeneous coordinates to pixel coordinates leads to

Tsai’s Method: From 3D Objects

11/48

Divided by scale λ
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 Solving Problem Based on DLT

 By re-arranging the terms, we obtain

 For 𝑛𝑛 points, we can stack all these equations into a big matrix

Tsai’s Method: From 3D Objects
Linear system w.r.t. 

the elements of 
unknown M matrix

Known coefficient 
matrix

Column vector
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 Solving Problem Based on DLT

 Final homogenous linear system

Tsai’s Method: From 3D Objects
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 Solving Problem Based on DLT

 Solving the linear system

Minimal solution
• 𝑄𝑄 (2𝑛𝑛×12) should have rank 11 to have a unique (up-to-scale) non-zero solution of vector 𝑀𝑀.
• Dimension of null space is 1. Vector M can be expressed by a basis vector multiplied by an arbitrary scalar.
• Because each 3D-to-2D point correspondence provides 2 independent equations, then 6 (5.5 in theory) 

point correspondences are needed.

Tsai’s Method: From 3D Objects

12-dimensional vector
(unknown)

2n*12 matrix
(known)

Scale of M does not matter for homogenous 
linear system. Scale can be recovered based 
on the constraint of last element of K (i.e., 1).
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 Solving Problem Based on DLT

 Solving the linear system

Over-determined solution
• For 𝑛𝑛 ≥ 6 points, a solution is the Least-Squares solution, which minimizes the sum of squared 

residuals, , subject to the constraint  (explain this constraint later). 
• It can be solved through Singular Value Decomposition (SVD).

Tsai’s Method: From 3D Objects

12-dimensional vector
(unknown)

2n*12 matrix
(known)
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 Solving Problem Based on DLT

 Solving the linear system

• Why do we need to add the constraint                      ? Zero vector is an obvious solution.
• How can we apply SVD to computing least-squares solution?

Tsai’s Method: From 3D Objects

Optimal solution b* is the column of V 
corresponding to the smallest singular value.

16/48
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 Camera Parameter Recovery

 Recover the intrinsic and extrinsic parameters
Recap on definition of M matrix

Tsai’s Method: From 3D Objects

17/48

known Unknown
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 Camera Parameter Recovery

 Enforcing the orthogonality constraint

• We are not enforcing the constraint that 𝑹𝑹 is orthogonal, i.e., 𝑹𝑹 ∙ 𝑹𝑹𝑻𝑻= I
• We can use the so-called QR factorization of 𝑴𝑴, which decomposes 𝑀𝑀 into a 𝑅𝑅 (orthogonal), T, and an 

upper triangular matrix (i.e., 𝐾𝐾)
• Orthogonality is inherently satisfied

Tsai’s Method: From 3D Objects

A = QR
Case of square matrix

Case of non-square matrix
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 Practical Setup

 Use many more than 6 points (ideally more than 20) and non coplanar.
 Corners can be detected with accuracy < 0.1 pixels (will be introduced in Chapter 05 

“Correspondence Estimation”). 

Distortion can be also consideredKeypoint detection

Tsai’s Method: From 3D Objects

19/48
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 A Simpler Setup

 Zhang’s method [2] relies on 3D coplanar points.

Tsai calibration object (left), Zhang calibration object (right)

Zhang’s Method: From Planar Grids

[2] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
22(11):1330–1334, 2000.

A single image Multiview images

20/48
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 Solving Problem based on DLT

 As in Tsai’s method, we start by neglecting the radial distortion.
 Zhang’s method the points are all coplanar, i.e., 𝒁𝒁𝒘𝒘 = 0.

Zhang’s Method: From Planar Grids

Z-axis of the 
world frame

x

y
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 Solving Problem based on DLT

 Rewriting Equations

Zhang’s Method: From Planar Grids
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 Solving Problem based on DLT

 Rewriting Equations

Zhang’s Method: From Planar Grids
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 Solving Problem based on DLT

 Conversion back from homogeneous coordinates to pixel coordinates

Zhang’s Method: From Planar Grids

Pixel coordinatesHomogeneous 
coordinates

The i-th observed 3D-
2D correspondence

24/48



Computer Vision Group

 Solving Problem based on DLT

 Re-arranging the terms

Zhang’s Method: From Planar Grids

Linear system w.r.t. 
elements of homography

25/48
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 Solving Problem based on DLT

 For 𝑛𝑛 points (from a single view), we can stack all these equations into a big matrix

Zhang’s Method: From Planar Grids

26/48
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 Solving Problem based on DLT

 Solving the linear system

Minimal solution
• 𝑄𝑄 (2𝑛𝑛×9) should have rank 8 to have a unique (up to a scale) non-trivial solution 𝐻𝐻 (properties of 

Homography will be introduced in the future)
• Each point correspondence provides 2 independent equations
• Thus, a minimum of 4 non-collinear points is required

Zhang’s Method: From Planar Grids

Scale does not matter
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 Solving Problem based on DLT

 Solving the linear system

Solution for 𝒏𝒏 ≥ 𝟒𝟒 points
• It can be solved through Singular Value Decomposition (SVD) (same considerations as before)

Zhang’s Method: From Planar Grids

Optimal solution b* is the column of V 
corresponding to the smallest singular 
value.

28/48
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 Camera Parameter Recovery: Overview

 𝐾𝐾, 𝑅𝑅, 𝑇𝑇 can be recovered by decomposition of H

• Different from Tsai’s method, the decomposition of 𝐻𝐻 into 𝐾𝐾, 𝑅𝑅, 𝑇𝑇 requires multiple views (introduced 
later).

• In practice the more views the better, e.g., 20-50 views spanning the entire field of view of the camera 
for the best calibration results.

Zhang’s Method: From Planar Grids

Can we still use QR decomposition? No.
Upper triangular matrix * orthogonal matrix

Up to scale
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 Camera Parameter Recovery: Overview

 Each view 𝑗𝑗 has a different homography𝐻𝐻𝑗𝑗 (and so a different 𝑅𝑅𝑗𝑗 and 𝑇𝑇𝑗𝑗 ). However, 𝑲𝑲 is 
the same for all views*.

 Estimate the homography 𝐻𝐻𝑖𝑖 for each 𝑖𝑖-th view using the DLT algorithm.

Zhang’s Method: From Planar Grids

Each view corresponds to a homography

30/48* In our slides, we also denote intrinsic matrix by M.
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 Camera Parameter Recovery: Details

 First step: Determine intrinsic matrix M of camera from a set of known homographies.

• Idea: Use the prior constraints of rotation to derive formulas w.r.t. only unknown intrinsic parameters.

• We first express columns of rotation by unknown intrinsic parameters

Zhang’s Method: From Planar Grids Intrinsic matrix
Known

31/48
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 Camera Parameter Recovery: Details

 First step: Determine intrinsic matrix M of camera from a set of known homographies.

• We then enforce the constraints of columns w.r.t. rotation 

Zhang’s Method: From Planar Grids

First constraint w.r.t. only M

Second constraintw.r.t. only M

Intrinsic matrix
Known

32/48
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 Camera Parameter Recovery: Details

 First step: Determine intrinsic matrix M of camera from a set of known homographies.

• We define a matrix B w.r.t. the unknown intrinsic parameters of M
• Instead of directly solving M, we firsts estimate B

• If we solved matrix B based on Homography, we can extract intrinsic parameters from B

Zhang’s Method: From Planar Grids

Example: B11 is w.r.t. the focal length

A symmetric matrix
(6 elements to estimate)
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 Camera Parameter Recovery: Details

 First step: Determine intrinsic matrix M of camera from a set of known homographies.

• Each homography𝐻𝐻𝑖𝑖 ∼ 𝐾𝐾 * [ 𝒓𝒓1, 𝒓𝒓2, 𝒕𝒕 ] provides two linear equations in the 6 entries of the matrix                         

• Stack 2N equations from N views, to yield a linear system 𝐴𝐴𝒃𝒃 = 𝟎𝟎. Solve for b (i.e., B) using the Singular Value 
Decomposition (SVD).

• Typically, we need more than 3 views (each view provides two constraints).

Zhang’s Method: From Planar Grids

Vectors h1 and h2 are known

34/48
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 Camera Parameter Recovery: Details

 Second step: The extrinsic parameters for each view can be computed using M:

• Compute each column

• Finally, build 𝑅𝑅𝑖𝑖 = (𝒓𝒓1, 𝒓𝒓2, 𝒓𝒓3) and enforce rotation matrix constraints.

Zhang’s Method: From Planar Grids

Projecting the result from the matrix space 
onto the SO(3) manifold

s.t.

Intrinsic matrix
Known

35/48
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 Recap on Type of Distortion

 Radial Distortion occurs when light rays bend more near the edges of a lens than they 
do at its optical center.

 Tangential Distortion: if the lens is misaligned (not perfectly parallel to the image 
sensor), a tangential distortion occurs.

Image Undistortion

Tangential distortion Radial distortion 36/48
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 Introducing Distortion Model into Perspective Projection

 From world frame to camera frame

 From camera frame to image (distortion-free case)

Image Undistortion

(Non-homogenous coordinates)
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 Introducing Distortion Model into Perspective Projection

 Adding the distortion coefficients

Image Undistortion

Distortion-free model Distortion model

This expression is not unique

38/48
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 Joint Estimation 

Given the object points and image points (detected chessboard corners), we conduct the 
following steps (Zhang’s method).

• Compute the initial intrinsic parameters. The distortion coefficients are all set to zeros initially.
• Estimate the initial extrinsic parameters as if the intrinsic parameters have been already known.

• Run the gradient descent algorithm to minimize the reprojection error to jointly optimize/estimate 
intrinsic, extrinsic, and distortion parameters.

Image Undistortion
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 Joint Estimation 

Reprojection error is the Euclidean distance (in pixels) between an observed image point 
and the corresponding 3D point reprojected onto the camera frame. 

Image Undistortion
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 Joint Estimation 

The calibration parameters 𝐾𝐾, 𝑅𝑅, 𝑇𝑇 determined by the DLT can be refined by minimizing 
the following cost/objective function

Image Undistortion
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 Joint Estimation 

The cost function can be minimized using gradient descent algorithm (details will be 
introduced in Chapter 11: Bundle Adjustment and Optimization).

Image Undistortion

Derivative computation
Reprojection error is minimized iteratively
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 Joint Estimation 

The cost function can be minimized using gradient descent algorithm (details will be 
introduced in Chapter 11: Bundle Adjustment and Optimization).

Image Undistortion

Global optimum finding

Initial value

Initial value
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 Line-based Undistortion

If we only have a single image obtained in a Man-made environment (Manhattan world), 
can we still manage to undistort an image?

Image Undistortion

Manhattan world

Single image with lines 
in Manhattan world

Multiple images with points

Parameters to estimateConstraint

Multi-view constraint

Structural regularity
constraint

Intrinsic parameters
Distortion parameters

Vanishing points

Intrinsic parameters
Distortion parameters
Extrinsic parameters

This knowledge will not be asked in the exam. 44/48
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 Line-based Undistortion

 Recap on explicit distortion model

We use the explicit model with respect to a single radial distortion parameter r (instead of 
the polynomial model) to convert the distorted point                to the original point

Image Undistortion

unknown
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 Line-based Undistortion

We leverage the fact that reliable calibration (intrinsic+distortion) parameters lead to the 
vanishing points maximizing the number of inlier lines.

Image Undistortion

Vanishing point estimation

Input data

All the circles (lines) are 
labelled as inliers when we 
use the correctly estimated 

calibrations parameters
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 Line-based Undistortion

We aim to find the optimal calibration parameters to estimate vanishing points that 
maximize the number of inlier lines.

Image Undistortion

47/48
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 Overview of Calibration
 Tsai’s Method: From 3D Objects
 Zhang’s Method: From Planar Grids
 Image Undistortion

Summary

48/48



Computer Vision Group

Thank you for your listening!
If you have any questions, please come to me :-)
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