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 Course Content, Exercise Session, and Exam

 Course content and exercise session
• This year, we have new lecturers and new teaching assistants. Slides for lectures are totally new, but 

exercise questions are partly based on the materials from the previous years.
• I will try to introduce more detailed knowledge required by the exercise session in the future.

 Couse content and exam
• Exam questions will be most aligned to the course content, so they will be partly different from questions 

from previous years. (Note: there still will be some overlaps.)
• All the involved knowledge in the exam will be clearly introduced in our class. Therefore, as long as you 

understand the knowledge introduced in our class, you should obtain a good grade.
• I will prepare a class to review knowledge important for the exam (tentatively on 13 July). P.S.: Exam is on 

04 August.

Announcement before Class
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 Programming Assignments and Bonus

 Programming assignment
• We received some feedback and we have discussed potential solutions.
• For example, our teaching assistants will add additional feedback on the sample tests to help students pass 

the tests more easily.
• Please note that there are also hidden test cases that your solution is being evaluated against.

 Bonus
• From my perspective, this bonus is not very easy to obtain.
• If we think you have to spend much more time than you expected, i.e., it is not very “economical”, please 

mainly focus on the content of our lecture.
• You can still obtain a satisfactory grade even without bonus.

Announcement before Class
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 Single Camera and Multiple Camera Frames

 In VO/SLAM/SFM, we use a single camera to obtain multiple images from different view 
points. Multiple view points correspond to multiple camera frames.

 However, in practice, we may do not differentiate between “cameras” and “camera 
frames”.

Clarification before Class
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 Projection Plane and Image Plane

 Strictly, projection plane refers to the plane defined by the origin of a coordinate system 
and a 3D line/2D line.

 However, in practice, projection plane may also correspond to the image plane.
 Projection ray refers to the 3D direction defined by the origin of a coordinate system and a 

3D point/2D point.

Clarification before Class
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 Homogeneous Coordinates of 2D line

Two representative methods introduced in the middle school
 y=kx+b

 ax+by+c=0               
• (a, b, c)  is the homogenous coordinates of 2D line
• (1, 2, 3) is equivalent to (2, 4, 6)

• Two points (x0, y0) and (x1, y1) determine a 2D line
ax0+by0+c=0
ax1+by1+c=0

To solve this linear system, we can choose an arbitrary value of c

• We can directly obtain (a, b, c) by the cross product between (x0, y0, 1) and (x1, y1, 1)

Explanation before Class
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 Overview of Matching/Tracking Problem
 KLT Tracker for Small Motion
• Simplified Case: Pure Translation
• General Case

Today’s Outline

01/30
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Overview of Matching/Tracking Problem
 Problem Formulation

 A practical task: estimate the transformation 𝑊𝑊 (warping) between a template image 𝑇𝑇
and the current image 𝐼𝐼.

 Clue: All the (inlier) 2D-2D point correspondences should satisfy the same warping model.
Template image Current image

02/30
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Overview of Matching/Tracking Problem
 Problem Formulation

 The warping estimation problem can be reformulated as the correspondence finding 
problem.

 Example of Euclidian transformation

 Two types of solutions to find correspondences exit: indirect and direct methods.

are warping parameters to estimate

(𝑥𝑥,𝑦𝑦) and (𝑥𝑥′,𝑦𝑦′) constitute a pair of 
unknown-but-sought correspondence

03/30

A “chicken-and-egg” 
problem
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 Problem Formulation

 Indirect methods (next week)

• They work by detecting and matching features (points or 
lines)

• Pros: They can cope with large frame-to-frame motions 
and strong illumination changes

• Cons: They are slow due to costly feature extraction, 
matching, and outlier removal (e.g., RANSAC)

Matched points

Overview of Matching/Tracking Problem

04/30
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 Problem Formulation

 Indirect methods (next week)

1. Detect and match features that are invariant to scale, rotation, view point changes (e.g., SIFT)

2. Geometric verification (RANSAC) (e.g., 4 point RANSAC for planar objects, or 5 or 8 point RANSAC for 
3D objects)

3. Refine estimate by minimizing the sum of squared reprojection errors between the observed feature 𝒇𝒇𝑖𝑖
in the current image and the warped corresponding feature 𝑊𝑊(𝐱𝐱𝑖𝑖,𝐩𝐩) from the template

Feature distance

Overview of Matching/Tracking Problem
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 Problem Formulation

 Direct methods (today)

• Pros: All information in the image can be exploited (higher accuracy, 
higher robustness to motion blur and weak texture (i.e., weak 
gradients))

• Pros: Increasing the camera frame rate reduces computational cost 
per frame (no RANSAC needed)

• Cons: Very sensitive to initial value limited frame to frame motion

Tracked points

Overview of Matching/Tracking Problem
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 Problem Formulation

 Direct methods (today)

• They work by directly processing pixel intensities.
• Technically, they estimate the parameters p of the transformation 𝑊𝑊(𝐱𝐱,𝐩𝐩) that minimize the Sum of 

Squared Differences:

Every yellow dot in this 
image denotes a pixel

Intensity/brightness distance

Overview of Matching/Tracking Problem
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 Assumptions of Direct Methods

 Brightness constancy
• The intensity of the pixels to track does not change much over consecutive frames
• It does not cope with strong illumination changes

✔ ✘

Overview of Matching/Tracking Problem

08/30
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 Assumptions of Direct Methods

 Temporal consistency
• Small frame-to-frame motion (1-2 pixels).
• It does not cope with large frame to frame motion. However, this can be addressed using coarse to 

fine multi scale implementations (see later)

✔ ✘

Overview of Matching/Tracking Problem

09/30
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 Assumptions of Direct Methods

 Spatial coherence
• All pixels in the template undergo the same transformation (i.e., they roughly lie on the same 3D surface)

Overview of Matching/Tracking Problem

10/30
Point roughly lying on the same surface (face)
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 Assumptions of Direct Methods

 Spatial coherency
• No errors in the template image boundaries: only the object to track appears in the template image
• No occlusion: the entire template is visible in the input image

✔ ✘✘

Foreground and background 
have different motions Occlusion

Overview of Matching/Tracking Problem
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KLT Tracker for Small Motion
 Overview

The Kanade-Lucas-Tomasi (KLT) tracker tackles two problems:

 How should we select features? 
• Tomasi-Kanade: Method for choosing the best feature (image patch) 

for tracking

 How should we track them from frame to frame?
• Lucas-Kanade: Method for aligning (tracking) an image patch

---------------------------------------------------------
 Structure of our introduction
• Simplified case: pure translation
• General case 12/30
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KLT Tracker for Small Motion
 Simplified Case: Pure Translation

 Consider the reference patch centered at (𝑥𝑥,𝑦𝑦) in image 𝐼𝐼0 and the shifted patch centered 
at (𝑥𝑥+𝑢𝑢,𝑦𝑦+𝑣𝑣) in image 𝐼𝐼1. The patch has size Ω. 

 We want to find the motion vector (𝑢𝑢,𝑣𝑣) that minimizes the Sum of Squared Differences 
(SSD) w.r.t. the intensity (based on the intensity invariance assumption):

Reference patch
(template)

13/30



Computer Vision Group

KLT Tracker for Small Motion
 Simplified Case: Pure Translation

 Recap on mathematical knowledge
• Derivative and gradient

Single univariate function

Single multivariate function

Multiple multivariate function

14/30
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KLT Tracker for Small Motion
 Simplified Case: Pure Translation

 Recap on mathematical knowledge
• First-order optimality condition

Zero-valued derivative(s) with respect to the unknown parameter(s) correspond to the minimum.

1D function 2D function
Gradient notation 

15/30
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KLT Tracker for Small Motion
 Simplified Case: Pure Translation

 Cost function (quadratic function) w.r.t. two variables (𝑢𝑢,𝑣𝑣)
The first-order 

Taylor polynomial 

Directional derivative

Intensity difference at (x, y)

(     )

16/30
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KLT Tracker for Small Motion
 Simplified Case: Pure Translation

 To minimize it, we differentiate it with respect to (𝑢𝑢,𝑣𝑣) and equate it to zero:

17/30
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KLT Tracker for Small Motion
 Simplified Case: Pure Translation

 Linear system of two equations w.r.t. two unknown parameters (𝑢𝑢,𝑣𝑣) 
 We can write them in matrix form:

M Inverse of M 18/30
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KLT Tracker for Small Motion
 Simplified Case: Pure Translation

 For M to be invertible, det(𝑀𝑀) should be non zero, which means that its eigenvalues 
should be large (i.e., not a flat region, not an edge) 

 In practice, it should be a corner or more generally contain texture

Ix and Iy: Directional derivatives Eigenvectors

Eigenvalues

Eigenvalue

Eigenvector

19/30
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KLT Tracker for Small Motion
 Simplified Case: Pure Translation

 Answer to our two main tasks
• How should we select features? 
Patch whose associated M matrix has large eigen values.

• How should we track them from frame to frame?
(u, v) is the displacement vector.

Color encodes motion directionIntensity difference at (x, y)
20/30
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KLT Tracker for Small Motion
 General Case

 Relationship between pure translation and general motion
• Definition of cost function

Pure translation

General transformation (warping) 
a vector-valued function

p represents the warping parameters 21/30
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KLT Tracker for Small Motion
 General Case

 Relationship between pure translation and general motion
• Minimization of cost function

Similarity: 
In both case, we apply a first order approximation of the warping.

Difference:
• In pure translation case, we equate partial derivatives to zero and directly obtain solutions (u, v).
• In the general case, we leverage Gauss-Newton method to minimize the SSD iteratively. (We can still use 

first-order optimality condition to generate equations w.r.t. warping parameters, but they may be difficult 
to solve.)

Recap on first-order approximation 
in pure translation case

Recap on zero-valued partial derivatives in 
pure translation case

22/30
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KLT Tracker for Small Motion
 General Case

 Overview
We incrementally update the warping 
parameters p to continuously reduce the 
value of cost function.

 One iteration
Assume that an initial estimate of p is known. 
Then, we want to find the increment Δ𝐩𝐩 that 
minimizes

Initial value

Global optimum

Intermediate result

p p+Δp 23/30
Known (initial guess or result of the 

previous iteration)

Unknown
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KLT Tracker for Small Motion
 General Case

 One iteration
First-order Taylor approximation of yields to:

Jacobian

is the image gradient

24/30
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KLT Tracker for Small Motion
 General Case

 One iteration
Substitute Taylor approximation of into SSD cost, we have new cost 
function:

 How do we minimize new cost?
Briefly, we differentiate SSD with respect to Δ𝐩𝐩 and we equate it to zero, i.e.,

25/30
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KLT Tracker for Small Motion
 General Case

 How do we minimize new cost?
By differentiating SSD with respect to Δ𝐩𝐩 and setting the result as 0, we have

distributive laws

Derivative:

26/30
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KLT Tracker for Small Motion
 Another Derivation in General Case (for Exercise Session)

 Brightness Constancy
• Video (sequential images) is w.r.t. the time t and a tracked point’s position is also w.r.t. 

the time t.

• Based on the brininess consistency assumption, we set derivative as 0.

Called “optical flow constraint”

Velocity
27/30
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KLT Tracker for Small Motion
 Another Derivation in General Case (for Exercise Session)

 Constant motion in a neighborhood:
• We assume that the velocity v is constant over a neighborhood W(x) of the point x

Image patches
28/30
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KLT Tracker for Small Motion
 Another Derivation in General Case (for Exercise Session)

 Compute the best velocity vector v for the point x by minimizing the least squares error

 Expanding the terms and setting the derivative to zero:

where

This will be used in exercise session

29/30
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 Overview of Tracking Problem
 KLT Tracker for Small Motion
• Simplified case: pure translation
• General case

Summary

30/30



Computer Vision Group

Thank you for your listening!
If you have any questions, please come to me :-)
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