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 Updated Lecture Schedule

Announcement

Wed 19.04.2023  Chapter 00: Introduction 
Thu 20.04.2023  Chapter 01: Mathematical Backgrounds

Wed 26.04.2023  Chapter 02: Motion and Scene Representation (Part 1)
Thu 27.04.2023  Chapter 02:  Motion and Scene Representation (Part 2)

Wed 03.05.2023  Chapter 03: Image Formation (Part 1)
Thu 04.05.2023  Chapter 03: Image Formation (Part 2)

Wed 10.05.2023  Chapter 04: Camera Calibration
Thu 11.05.2023  Chapter 05: Correspondence Estimation (Part 1)

Wed 17.05.2023  Chapter 05: Correspondence Estimation (Part 2)
Thu 18.05.2023  No lecture (Public Holiday)

Wed 24.05.2023  No lecture (Conference)
Thu 25.05.2023  No lecture (Conference)

For updates, slides, and additional materials:
https://cvg.cit.tum.de/teaching/ss2023/cv2

90-minute course; 45-minute course

Foundation

Core part

Advanced topics and 
high-level task

Wed 31.05.2023  Chapter 06: 2D-2D Geometry (Part 1)
Thu 01.06.2023  Chapter 06: 2D-2D Geometry (Part 2)

Wed 07.06.2023  Chapter 06: 2D-2D Geometry (Part 3)
Thu 08.06.2023  No lecture (Public Holiday)

Wed 14.06.2023  Chapter 07: 3D-2D Geometry (Part 1) 
Thu 15.06.2023  Chapter 07: 3D-2D Geometry (Part 2) 

Wed 21.06.2023  Chapter 08: 3D-3D Geometry (Part 1)
Thu 22.06.2023  Chapter 08: 3D-3D Geometry (Part 2)

Wed 28.06.2023  Chapter 09: Single-view Geometry (Part 1)
Thu 29.06.2023  Chapter 09: Single-view Geometry (Part 2) 

Wed 05.07.2023  Chapter 10: Photometric Error (Direct Method)
Thu 06.07.2023  Chapter 11: Bundle Adjustment and Optimization

Wed 12.07.2023  Chapter 12: Robot Estimation 
Thu 13.07.2023  Knowledge Review

Wed 19.07.2023  Chapter 13: SLAM and SFM (Part 2)
Thu 20.07.2023 Chapter 13: SLAM and SFM (Part 1) 

Videos and reading materials
about the combination of deep 

learning and multi-view geometry

https://cvg.cit.tum.de/teaching/ss2023/cv2
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 Updated Lecture Schedule

Though we do not have lectures on 24 and 25 May, the exercise session will still be held 
normally on 24 May.

Announcement

Wed 24.05.2023  No lecture (Conference)
Thu 25.05.2023  No lecture (Conference)

Videos and reading materials
about the combination of deep 

learning and multi-view geometry

Tentative Exercise Schedule
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 Which Points Should We Track?

 Theoretical strategy

 Practical solution

Ix and Iy: 
Directional derivatives 

Eigenvectors

Eigenvalues

…Only first image: 
judge each pixel

Subsequent images: 
only consider the 

tracked points

Problem: relatively low efficiency due to 
judgement on all the pixels in an image

Explanations for Previous Knowledge
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 Brightness Consistency

 Video I (sequential images) is w.r.t. the time t. A tracked point’s position x is also w.r.t. 
the time t.

 We use the pixel coordinate system whose origin is located at the top-left of image.

Moving object

Moving cameraSequential images

v

u u

v
u

v

A tracked point

A tracked point

I(t-1)

I(t)

I(t)
I(t-1)

Frames obtained 
by a static camera

Explanations for Previous Knowledge
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 Chicken-and-egg Problem

 Definition
A problem has two sets of unknown parameters. Parameters are mutually determined.

 Examples

are warping parameters to estimate

(𝑥𝑥,𝑦𝑦) and (𝑥𝑥′,𝑦𝑦′) constitute a pair of 
unknown-but-sought correspondences

(𝑥𝑥,𝑦𝑦) (𝑥𝑥′,𝑦𝑦′)

Explanations for Previous Knowledge
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 Chicken-and-egg Problem

 Solution
Find additional constraint to solve parameters.

Explanations for Previous Knowledge

Brightness consistency1st image 
(template image)

2nd image 
(current image)

Additional constraint: 
Brightness consistency
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 Overview of Indirect Method 
 Feature Detector
 Feature Descriptor

Today’s Outline

01/39
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 Recap on Problem Formulation

 Core idea: To compute the transformation between two images, we resort to 
detecting and matching features (points or lines).

 Pros: They can cope with large frame-to-frame motions and strong illumination 
changes.

 Cons: They are slow due to costly feature extraction, matching, and outlier removal 
(e.g., RANSAC).

Overview of Indirect Method 

Feature detection Feature matching

02/39

Inliers
Outliers

Direct method (KLT):
Indirect method: A two-step strategyA one-step strategy

Transformation estimation
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 Recap on Problem Formulation

 Pipeline for alignment between template and current images
1. Detect and match features that are invariant to scale, rotation, view point changes (e.g., SIFT)

2. Transformation computation and Geometric verification (e.g., 4 point RANSAC for planar objects, or 5 or 8 
point RANSAC for 3D objects)

3. Refine the initial estimation by minimizing the sum of squared reprojection errors between the observed 
feature 𝒇𝒇𝑖𝑖 in the current image and the warped corresponding feature 𝑊𝑊(𝐱𝐱𝑖𝑖,𝐩𝐩) from the template

Overview of Indirect Method 

Geometric feature (point) distance

03/392D coordinates of points
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 Definition of Blob

 A blob is a group of connected pixels in an image that share some common property 
(e.g, grayscale value). 

 In the image below, the colored regions are blobs, and blob detection aims to identify 
and mark these regions.

Feature Detector

04/39
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 Comparison between Corner and Blob

 A corner is defined as the intersection of two or more edges
• Corners have high localization accuracy 
• Corners are less distinctive than blobs
• E.g., Moravec, Harris, Shi-Tomasi, SUSAN, FAST

 Blob introduced before
• Blobs have less localization accuracy than corners
• Blobs are more distinctive than corners 
• E.g., MSER, LOG, DOG (SIFT), SURF, CenSurE, etc.

Blobs

Corners

05/39

Feature Detector

Methods shown in blue will be mainly discussed
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 Corner Detection

 Key observation: in the region around a corner, the image gradient has multiple 
dominant directions (e.g., vertical, horizontal, and diagonal).

 Shifting a window in any direction should cause large intensity changes around a corner.

06/39

Feature Detector
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 Corner Detection

 We use Sum of Squared Differences (SSD) to measure the brightness change.
 Consider the reference patch and a patch shifted by (Δ𝑥𝑥, Δ𝑦𝑦). The Sum of Squared 

Differences between them is

SSD along the direction along the diagonal

07/39

A shifted 
patch

reference 
patch

A pair of 
corresponding 

pixels

Feature Detector
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 Corner Detection

 Moravec’s method
• For two patches, compute the sum of squared differences (SSD) 

between all pairs of corresponding pixels.
• A lower SSD indicates higher similarity between two patches.
• Consider SSD along multiple directions. The interest measurement 

of a patch is defined as the smallest SSD.
• If a patch’s interest measurement is higher than a threshold, the 

patch center is a corner.

 We have to physically shift the window. Can we make it 
more efficient? 

08/39

Feature Detector

Horizontal, vertical, and two diagonals
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 Corner Detection

 Approximating with a 1st order Taylor expansion (introduced before):

This is a quadratic function in two variables (Δ𝑥𝑥, Δ𝑦𝑦)

We no longer minimize SSD but just measure SSD here!

09/39

The first-order 
Taylor polynomial 

Feature Detector
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 Corner Detection

 Matrix form of approximation result

10/39
This matrix encodes the SSD change

Feature Detector

Manually selected
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 Corner Detection

 Conclusion
If both eigenvalues are much larger than 0 then we have a corner.

11/39

Feature Detector

Representative results
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 Corner Detection

 The above method without explicitly shifting patch is called Harris detector 
 The Harris detector is not scale invariant (same patch size is not applicable to different 

scales of images)

12/39

An example: we apply the same 
window/patch size to two 
images with different scales

Feature Detector
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 Feature Matching Based on Descriptor

 Given a detected point in 𝐼𝐼1, how to find the best match in 𝐼𝐼2?

• Define point descriptors, e.g., Census, HOG, ORB , BRIEF , BRISK, FREAK.
• Define distance function that compares two descriptors, e.g., SSD , SAD , NCC or Hamming distance.

Feature Descriptor

13/39

𝐼𝐼1 𝐼𝐼2
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 Feature Matching Based on Descriptor

 A naive matching strategy: Brute force matching
• Here, we assume that detected points, point descriptions are both known. 
• Compare each feature in 𝐼𝐼1 against all the features in 𝐼𝐼2 (𝑁𝑁2 comparisons, where 𝑁𝑁 is the number of 

features in each image).
• Select the point pair with the minimum distance, i.e., the closest description.

Feature Descriptor

14/39
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 Feature Matching Based on Descriptor

 Issue with closest descriptor:
Algorithm can occasionally return good scores for false matches
A solution: compute ratio of distances to 1st to 2nd closest descriptor

where:
𝑑𝑑1 is the distance from the closest descriptor
𝑑𝑑2 is the distance of the 2nd closest descriptor

Feature Descriptor

15/39
Distinctive points

Unreliable 
points due to 

repetitive 
patternDistinctive enough
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 Distance Function Definition

 Similarity measurement (applicable to both 2D and 1D)

• Sum of Squared Differences (SSD): always ≥ 0. It’s exactly 0 only if 𝐻𝐻 and 𝐹𝐹 are identical

• Sum of Absolute Differences (SAD): always ≥ 0. It’s 0 only if 𝐻𝐻 and 𝐹𝐹 are identical

16/39

Feature Descriptor

1D descriptors

2D patches

H and F denote left and 
right patches/descriptors 

respectively
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 Distance Function Definition

 Similarity measurement

• Normalized Cross Correlation (NCC): ranges between -1 and +1 and is exactly 1 if 𝐻𝐻 and 𝐹𝐹 are identical

• To account for the difference in the average intensity of two images (typically caused by additive 
illumination changes), we subtract the mean value of each image:

17/39

Feature Descriptor

(1,1) and (1,1):
NCC = 1

(1,1) and (-1,-1):
NCC = -1

Zero-mean
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 Properties of Descriptor

 Distinctiveness of a feature descriptor
• A descriptor is a “description” of the pixel information 

around a feature.
• “Distinctiveness” means that the descriptor can 

uniquely distinguish a feature from the other features 
without ambiguity. 

 Robustness to geometric changes
• Scale-invariant (for zooming)
• Rotation-invariant 
• View point-invariant (for perspective changes)

18/39

Geometric changes 

✔
✘

✘
✘

Distinctiveness

Feature Descriptor
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 Properties of Descriptor

 Robustness to illumination changes
• Small illumination changes are modelled with an affine transformation (so called affine illumination 

changes) changes:

19/39

Feature Descriptor

Intensities



Computer Vision Group

 Traditional Method based on Patch Feature

 General pipeline
• Determine the scale, rotation and viewpoint change of each patch (introduced later).
• Warp each patch into a canonical patch.
• Establish patch correspondences based on similarity of the warped patch.

20/39

Feature Descriptor

✔

✘

✘

✔

✔

Canonical space
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 Scale of Descriptor

 Problem formulation
Two image patches have the same size, but are in the images with different scales. How can 
we match these patches?

21/39

Images with different scales

Two patches with the same size

Feature Descriptor
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 Scale of Descriptor

 A possible solution
Keep the left patch unchanged, and resize the right patch with different tentative sizes. 

22/39
Original scale First tentative size Second tentative size

Feature Descriptor
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 Scale of Descriptor 

 Patch size search is time-consuming 
• We need to individually re-size all the patches in the right image.
• Algorithm complexity is 𝑁𝑁2𝑆𝑆 assuming 𝑁𝑁 features per image and 𝑆𝑆 tentative sizes per feature.

• A better solution of automatic size selection: We aim to “automatically” assign each patch (both left 
and right) its own size.

23/39

N patches

S sizes

Feature Descriptor
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 Scale of Descriptor

 Overview of automatic size selection

• Core idea: Assign a function to the image patch. The function extremum is scale invariant. 
• Try candidate scales in each image independently

• When the left patch is resized by s1, and the right patch is resized by s2, their associated functions both 
achieve (the same) extremum. s1 and s2 are our automatically determined sizes of patches.

• We care about which scale leads to the extremum. The value of extremum is not important.
24/39

Feature Descriptor



 Scale of Descriptor

 An example of automatic scale selection

• Patches with the same size correspond to different function values.

• Intuitively, only if two patches correspond to the same 3D area, their associated extreme values of 
function are the same.

Computer Vision Group

25/39

Feature Descriptor
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 Scale of Descriptor

 An example of automatic scale selection

• Two patches with different sizes correspond to the same 3D areas. These two patches lead to the same 
extreme value of function.

• Note: We determine the scale of a patch in each image independently. We try a set of candidate scales 
for a patch. The scale leading to extremum is the optimal scale.

26/39

What scale-invariant function should 
we assign to patch?

Feature Descriptor
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 Scale of Descriptor

 Function properties
• A “good” function for scale detection should have a single & sharp peak
• Sharp intensity changes are good regions to monitor in order to identify the scale

• In our context, for ease of understanding, we do not consider a more complex case (multiple extrema)

27/39

Feature Descriptor
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 Scale of Descriptor

 Function selection

• Intuitively, a human can identify the scale (patch sizes) by comparing the areas with sharp brightness 
discontinuities. (we can easily identify the same 3D area at different scales)

• Therefore, the ideal function for determining the scale should be able to highlight sharp discontinuities.

• Solution: convolve image patch with a kernel that highlights edges

28/39

Discontinuity Smoothness

A patch

Small size

Big size

Scale invariant 
Function

Feature Descriptor
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 Scale of Descriptor

 Function selection

• Recap on Laplace operator

29/39

Convolution

50 200

200200200

200

200 200 200

-4 1

010

1

0 1 0

* = 600

Apply Laplace operator to a pixel

Laplace operator

Laplace operator highlights the pixels 
with sharp intensity discontinuity (e.g., 

edge pixels)

Feature Descriptor
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 Scale of Descriptor

 Function selection

• Extension to the blob
It has been shown that the Laplacian of Gaussian kernel 
is optimal under certain assumptions [1]

30/39

A circular blob

Feature Descriptor

• The Laplacian of Gaussian is a circularly 
symmetric filter defined as:

[1] Lindeberg, Scale-space theory: A basic tool for analysing structures at different scales, Journal of Applied Statistics, 1994
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 Scale of Descriptor

 Function selection

31/39

Feature Descriptor

Side view 
of intensity 

Laplacian of Gaussian (LoG) 
with adjustable “width” (scale)

At what scale does the Laplacian achieve a maximum response (extremum) to a binary 
circle of radius r? 
• To get the maximum response, the Laplacian has to be aligned to the circle.
• The maximum response occurs at 
• A simplified but not general case with known circle. Generally, we have to test a set of candidate scales.

Circle pixels with low intensity (fixed)

Largest response
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 Scale of Descriptor

 Scale determination

• An ideal alignment between blob and LoG leads to a extrema
• The correct scale is found at the local extremum

32/39

An ideal alignment 
for right patch

An ideal alignment 
for left patch

Feature Descriptor
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 Scale of Descriptor

 Post-processing
When the right scale is found, the patches must be normalized to a canonical size so that 
they can be compared by SSD. Patch normalization is done via warping.

33/39

Normalization

Feature Descriptor
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 Rotation of Descriptor

 Determining patch orientation 
Eigenvectors of M matrix of Harris (introduced before) or dominant gradient direction 
(see next slide)

 Back-rotating patch through “patch warping”
This step puts the patches back into a canonical orientation

34/39
canonical orientation

Feature Descriptor
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 Rotation of Descriptor

 A general pipeline to express patch orientation
• Compute gradients vectors at each pixel within a patch
• Build a histogram of gradient orientations, weighted by the gradient magnitudes (norm of vector).
• Extract all local maxima in the histogram: each local maximum above a threshold is a candidate 

dominant orientation. 

35/39

Feature Descriptor

One patch with 
multiple pixels
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 Viewpoint of Descriptor

 Affine warping provides invariance to small view-point changes
• The second moment matrix M of the Harris detector can be used to identify the two directions of fastest 

and slowest change of SSD around the feature
• Out of these two directions, an ellipse-shaped patch is extracted
• The region inside the ellipse is normalized to a canonical circular patch

36/39

Feature Descriptor

Affine transformation
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 Summary

 Scale, rotation, and affine-invariant patch matching
1. Scale assignment: compute the scale using the LoG operator. (scale-invariant)
2. Rotation assignment: use Harris or gradient histogram to find dominant orientation. (rotation-invariant)
3. View point transformation: use Harris eigenvectors to extract affine transformation parameters. (view 
point-invariant)
4. Warp the patch into a canonical patch

37/39

Feature Descriptor

✔

✘

✘

✔

✔
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 Disadvantages of Patch Feature-based Method

 If the warping is not estimated accurately, very small errors in rotation, scale, and view 
point will affect matching score (e.g., SSD of patch features).

Is there a better strategy without directly using patch feature? Census feature (introduced 
in the next class). 38/39

Feature Descriptor

Left warped patch Right warped patch

Inconsistency
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 Overview of Indirect Method 
 Point Detector
 Point Descriptor

Summary

39/39
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Thank you for your listening!
If you have any questions, please come to me :-)
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