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 Exam

 Cheat sheet
• We will hold a lecture for knowledge review in July (highlighting knowledge important for our exam). The 

review scope will be narrowed down. Accordingly, we tentatively do not allow the cheat sheet in our exam.

 Document for reviewing Chapters 01--05
• We uploaded a document to highlight important knowledge in Chapters 00—05. It will be highly relevant to 

the final exam. If you want, you can start to review Chapters 00-05 from now on. Please download this 
document from our course website or Moodle.

• The other pages related to the highlighted knowledge should be also reviewed. I will give you a more precise 
scope in the future review class.

• This document is subject to “slight” change since our exam questions have not been finalized.

Announcement before Class
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 Updated Lecture Schedule

Announcement before Class

Wed 19.04.2023  Chapter 00: Introduction 
Thu 20.04.2023  Chapter 01: Mathematical Backgrounds

Wed 26.04.2023  Chapter 02: Motion and Scene Representation (Part 1)
Thu 27.04.2023  Chapter 02:  Motion and Scene Representation (Part 2)

Wed 03.05.2023  Chapter 03: Image Formation (Part 1)
Thu 04.05.2023  Chapter 03: Image Formation (Part 2)

Wed 10.05.2023  Chapter 04: Camera Calibration
Thu 11.05.2023  Chapter 05: Correspondence Estimation (Part 1)

Wed 17.05.2023  Chapter 05: Correspondence Estimation (Part 2)
Thu 18.05.2023  No lecture (Public Holiday)

Wed 24.05.2023  No lecture (Conference)
Thu 25.05.2023  No lecture (Conference)

For updates, slides, and additional materials:
https://cvg.cit.tum.de/teaching/ss2023/cv2

90-minute course; 45-minute course

Foundation

Core part

Advanced topics and 
high-level task

Wed 31.05.2023  Chapter 05: Correspondence Estimation (Part 3)
Thu 01.06.2023  Chapter 06: 2D-2D Geometry (Part 1)

Wed 07.06.2023  Chapter 06: 2D-2D Geometry (Part 2)
Thu 08.06.2023  No lecture (Public Holiday)

Wed 14.06.2023  Chapter 06: 2D-2D Geometry (Part 3)
Thu 15.06.2023 Chapter 07: 3D-2D Geometry (Part 1) 

Wed 21.06.2023 Chapter 07: 3D-2D Geometry (Part 2) 
Thu 22.06.2023  Chapter 08: 3D-3D Geometry

Wed 28.06.2023  Chapter 09: Single-view Geometry (Part 1)
Thu 29.06.2023  Chapter 09: Single-view Geometry (Part 2) 

Wed 05.07.2023  Chapter 10: Photometric Error (Direct Method)
Thu 06.07.2023  Chapter 11: Bundle Adjustment and Optimization

Wed 12.07.2023  Chapter 12: Robot Estimation 
Thu 13.07.2023  Knowledge Review

Wed 19.07.2023  Chapter 13: SLAM and SFM (Part 2)
Thu 20.07.2023 Chapter 13: SLAM and SFM (Part 1) 

Videos and reading materials
about the combination of deep 

learning and multi-view geometry

https://cvg.cit.tum.de/teaching/ss2023/cv2


Computer Vision Group

 Recap on Feature Matching Problem
 Recap on Patch Descriptor-based Method
 Response to Frequently-asked Questions
 A More Effective Method: SIFT
 Other Methods

Today’s Outline

01/50
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 Problem Formulation

 Given a detected point in 𝐼𝐼1, how to find the best match in 𝐼𝐼2?
Here, we assume that detected points (Harris), points’ descriptions (scale, rotation etc.) 
are both known. A naive matching strategy is brute force matching.
• Based on descriptor similarity, compare each feature in 𝐼𝐼1 against all the features in 𝐼𝐼2 (𝑁𝑁2 comparisons, 

where 𝑁𝑁 is the number of features in each image). Select the point pair with the minimum distance.
• How to define descriptor? How to measure similarity?

Recap on Feature Matching Problem

02/50

Known scale
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 Two types of descriptions

 Patch descriptor (i.e., patch of intensity values)
• Introduced in our last class
• Patch need to be warped to the canonical space

 Census descriptor (a vector with integer/float values)
• Introduced today

03/50

Recap on Feature Matching Problem

Canonical space
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 Descriptor similarity measurement (2D patch)

 Sum of Squared Differences (SSD): always ≥ 0. It’s exactly 0 only if 𝐻𝐻 and 𝐹𝐹 are identical

 Sum of Absolute Differences (SAD): always ≥ 0. It’s 0 only if 𝐻𝐻 and 𝐹𝐹 are identical

 To account for the difference in the average intensity of two images (typically caused by additive 
illumination changes), we subtract the mean value of each image:

04/50

2D patches

H and F denote left and 
right patches respectively

Recap on Feature Matching Problem

Zero-mean
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 Descriptor Similarity measurement (1D census vector)

 Normalized Cross Correlation (NCC): ranges between -1 and +1 and is exactly 1 if 𝐻𝐻 and 𝐹𝐹 are identical

 Cosine Euclidean, or Hamming distance are also applicable

05/50

(1,1) and (1,1):
NCC = 1

(1,1) and (-1,-1):
NCC = -1

Recap on Feature Matching Problem

1D descriptors

Euclidean distance
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 Structure of Knowledge Introduction

 Two types of methods

Recap on Feature Matching Problem

Feature matching
(we only talk about brute 
force matching strategy)

Patch descriptor-based method
(introduce in the last lecture;

Let us review it first) Automatically scale determination
(a single image)

Exhaustive/straightforward 
search of scale
(two images)

Census descriptor-based method
(today)

Automatically scale determination
(a single image)

06/50



Computer Vision Group

 General pipeline

 It is based on the patch descriptor (scale, rotation, etc.).
 Warp each patch into a canonical patch.
 Establish point correspondences based on similarity (SSD) of the warped patch.

07/50

✔

✘

✘

✔

✔

Canonical space

Recap on Patch Descriptor-based Method

Point correspondence
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 Properties of Patch Descriptor

 Distinctiveness of a feature descriptor
• A descriptor is a “description” of the pixel information 

around a feature.
• “Distinctiveness” means that the descriptor can 

uniquely distinguish a feature from the other features 
without ambiguity. 

 Robustness to geometric changes
• Scale-invariant (for zooming)
• Rotation-invariant
• View point-invariant (for perspective changes)

08/50

Geometric changes 

✔
✘

✘
✘

Distinctiveness

Recap on Patch Descriptor-based Method 
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 Scale of Patch Descriptor 

 Straightforward but inefficient patch scale search (relying on two images)
• Assume that we have independently detected some key points in the left and right images with different 

scales (here, we only consider scale).
• We aim to use brute force matching to match points based on sum of squared distances (SSD) of their 

associated patch features. 
• Problem: Two patches with the same size have different appearances due to different scales (even if they 

are corresponding patches), and thus we cannot directly use SSD (see below).

infeasible

Recap on Patch Descriptor-based Method 

09/50
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 Scale of Patch Descriptor 

 Straightforward but inefficient patch scale search (relying on two images)
• A straightforward solution is to keep the left patch unchanged, and resize the right patch with different 

tentative sizes. 

Original 
scale

First 
tentative 

size

Second 
tentative 

size

infeasible

Feasible to 
use SSD

The optimal scale

left right

Recap on Patch Descriptor-based Method 

10/50
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 Scale of Patch Descriptor 

 Straightforward but inefficient patch scale search (relying on two images)
• In practice, for each left patch, we have to validate all the right patches using all the tentative scales.
• We take a patch in the left image for example.

Scale 1

Scale 2

Scale N

All the SSD are large (they are not 
point correspondence!)

Scale 1

Scale 2

Scale N SSD is large (inappropriate scale)

SSD is large (inappropriate scale)

SSD is small (appropriate scale)

Recap on Patch Descriptor-based Method 

…

…

Not
deterministic

11/50
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 Scale of Patch Descriptor 

 Straightforward but inefficient patch scale search (relying on two images)
• Drawback 1: Scale determination depends on tentative matching. 

Algorithm complexity is 𝑁𝑁2𝑆𝑆 assuming 𝑁𝑁 features per image and 𝑆𝑆 tentative sizes per feature.
First N: number of left patches; Second N: number of right patches

• Drawback 2: We fix the scale of left patch, but cannot guarantee this scale is optimal (distinctive 
enough).

First left 
patch

Second 
left patch

Recap on Patch Descriptor-based Method 

12/50



Computer Vision Group

 Scale of Patch Descriptor 

 Straightforward but inefficient patch scale search (relying on two images)
• Relationship with brute force matching with known scales (introduced before): In brute force matching, 

we assume that scale of each patch is known a priori. So, the complexity is only 𝑁𝑁2

• It would be great if we can determine the scale before matching (independent of matching). How to 
achieve this? (How to automatically determine the scale in a single image?)

Recap on Patch Descriptor-based Method 

First left 
patch

Second 
left patch

Unnecessary (scale is automatically determined)

13/50
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 Scale of Patch Descriptor 

 Automatic scale determination

• We aim to “automatically” assign each patch (both left and right) its own size.
• In other words, we assign scale based on a single image. Our scale assignment is independent of 

tentative matching.

Scale is determined using a single image

Recap on Patch Descriptor-based Method 

Scale is determined 
using a pair of images

✔
✘

Blob with scale

14/50
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 Scale of Patch Descriptor 

 Automatic scale determination

• If we achieve the automatic scale determination, the straightforward but inefficient method introduced 
before degenerate into the brute force matching with known scales (no tentative scale test).

• This is just an overview. I will review details of automatic scale determination later.

Scales are determined using 
the left image a priori

Scales are determined using 
the right image a priori

Recap on Patch Descriptor-based Method 

15/50
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 Patch Descriptor about Rotating 

 Two strategies to rotate patch (first)
• The Harris detector is rotation invariant
• Eigenvectors of M matrix correspond to the directions of quickest and slowest changes of SSD

Explanations for FAQ

Ellipse rotates but its shape (i.e., eigenvalues of M) remains the same.
16/50
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 Patch Descriptor about Rotating 

 Two strategies to rotate patch (second)
• Compute gradients vectors at each pixel within a patch.
• Build a histogram of gradient orientations, weighted by the gradient magnitudes (norm of vector).
• Extract all local maxima in the histogram: each local maximum above a threshold is a candidate 

dominant orientation. (Typically, we have up to three directions.)

Response to FAQ

One patch with 
multiple pixels

Dominant 
directions

17/50
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 Understanding Blob with Scale

 Formal definition of blob (introduced in our previous class)
• A blob is a group of connected pixels in an image that share some common property (e.g, grayscale 

value). 
• In the image below, the colored regions are blobs. Given a single image, we aim to detect blobs and 

“automatically” assign them “appropriate” scales.

Response to FAQ

“Automatically” obtained 
scale in a single image

Different blob scales in two images

Appropriate: Circles correspond to the 
same 3D area

18/50
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 Understanding Blob with Scale

 Reason for blob detection/marking
• In feature matching problem, a blob inherently encodes the scale information (corner can hardly 

encode this information). Accordingly, we can directly resize the two patches and evaluate them by SSD. 
• Mathematically, scale can be expressed by the radius of circle.

Response to FAQ

Left image Right image

Scale 1 of blob 1
Scale 2 of blob 2

3D object

Blob 1 and Blob 2 have 
different scales, but they 
correspond to the same 
3D object.

19/50
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 Understanding Blob with Scale

 From blob matching to point correspondence
• Given a pair of matched blobs, their centers constitute a point correspondence.
• A small drawback: Blob centers may not be very precise, compared with corners

Response to FAQ

Left image Right image

Blob 1
Blob 2

Blob centers constitute a point correspondence

Left image Right image

20/50
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 Understanding Blob with Scale

 First type of misunderstanding
• Some students may misunderstand that we aim to find the precise contours to tightly enclose blobs 

with different shapes (see below).
• Instead, in our context, we focus on finding a circle to appropriately mark each blob (circle is 

unnecessarily an inscribed or circumscribed circle).

Response to FAQ

Image
Contour

Blob

Misunderstanding

Image
Circle

Blob

Our goal 21/50
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 Understanding Blob with Scale

 Second type of misunderstanding
• Some students may misunderstand that we can only handle circular blob. It is not the case. In practice, 

we can deal with blobs with arbitrary shapes.

• When talking about scale computation, I consider the circular blob for illustration. 
• I originally want to use this simplified case to help you understand the overall pipeline without going 

into too many details. However, it seems that it may mislead you. In the following, I will clarify this issue 
and then use another way to introduce knowledge.

Response to FAQ

Image Circle

Blob

Simplified case
General case

Blob

22/50
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 Understanding Blob with Scale

 Simplified but not general case (introduced in the last class)
• Assume that we have detected a circular blob. Which scale will lead to the maximum convolution response?

• In practice, we do not know circular blob a priori. So, 1) how can we detect a blob with an arbitrary shape? 
2) Can we still use a circle to mark such a blob? 3) What’s the practicality of the above conclusion?

Response to FAQ

Configuration for 
maximum response

A conclusion introduced in the class. Relationship between scale 
σ and radius r is

A known 
circular blob

Derivation of conclusion will not be asked in the exam.

Circle

Blob

Simplified case
General case

23/50



Computer Vision Group

 Understanding Blob with Scale

 How to detect a blob and determine its optimal scale σ?
• Main idea: we have to try a set of candidates.
• Only a single image is enough. We take a patch for example.
• Briefly, we apply a kernel (Laplacian of Gaussian) w.r.t. a single parameter σ to an image patch. 
• We validate a set of candidate scales σ. A scale leading to the maximum response is the optimal scale 

of patch (characteristic scale). 

Response to FAQ

Function
(response)

Laplacian of Gaussian (LoG) w.r.t. a 
single unknown parameter σ Function extremum

Patch

24/50
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 Understanding Blob with Scale

 How to detect a blob and determine its optimal scale σ?
• Intuitive illustration of convolution between patch and LoG

• From optimal scale to circle that is used to mark blob

Response to FAQ

Image

Smaller response Maximum response Smaller response

Function
(response)

Laplacian of Gaussian (LoG) w.r.t. a single 
unknown parameter σ

Patch

Image

General case
We draw circles based on the conclusion 

Circle

Blob

1

Zero-valued convolution
(since pixel intensity=0; LoG>0)

Negative convolution
(since LoG <0; pixel intensity>0)

25/50



Computer Vision Group

 Understanding Blob with Scale

 How to detect a blob and determine its optimal scale σ?
• A more detailed explanation: We take a pixel for example (it and 

its neighbors have similar brightness)

• We try several candidate scales

• Save the scale achieving the extremum

Response to FAQ

Find the optimal scale at a certain pixel

Response at 
pixel 1

Response 
(Extremum)
at scale σ2

Response at 
scale σ1

Pixel

✔

✘
✘

Response at 
scale σ3

26/50
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 Understanding Blob with Scale

 Intuitive illustration of reason for selecting LoG kernel
• Human can easily determine the scale of a patch with sufficient textures (significant gradient).
• We extract edge based on Laplace.
• By extension, we detect blob with scale based on LoG.

Response to FAQ

σ = 1.4 (adjustable)

Laplacian of Gaussian (LoG) w.r.t. 
a single unknown parameter σ

Discontinuity Smoothness

Small size

Big size

Human can determine the scale by
perceiving the change of patch appearance. 27/50
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 Understanding Blob with Scale

 Discarding too close patches with the same scale

• Assume that pixel 1 achieves the maximum response
at a certain candidate scale σi. At the same time,
pixels 2 also achieves the maximum response at this 
scale.

• If pixel 1 and pixel 2 are too close, how to discard
one of them?

• We can exploit non-maximum suppression (NMS).
We compare their respective extrema and only save the
Largest extremum.

Response to FAQ

Non-maximum suppression at a certain scale

Response at 
scale σi

Extremum at 
pixel 1

Extremum at 
pixel 2

Pixel 1

Pixel 2

✔

✘

28/50
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 Understanding Blob with Scale

 Summary of Algorithm to detect blobs with scales in a single image

1. Build a Laplacian scale space, starting with some initial scale and going for n iterations:

1.1. Generate a (scale-normalized) Laplacian of Gaussian (LoG) filter at a given scale “sigma”.
1.2. Filter image with the LoG kernel.
1.3. Save square of Laplacian filter response for current level of scale space.
1.4. Increase scale by a factor k.

2. Perform non-maximum suppression in scale space.

3. Display resulting circles at their characteristic scales.

Response to FAQ

Result of candidate 
scale validation 

and NMS 

Input

29/50
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 Understanding Blob with Scale

 Clarification of a statement about “known” scale (introduced in the last class)
• My statement: Before matching, we have known the scale of each patch a priori. So, we do NOT need 

to try several candidate scales when matching (like straightforward method with complexity N2S).
• My original meaning: We can first assume that scales of both left and right patch has been obtained. So, 

we can directly rescale patches and evaluate their difference. (I conceal the detail of scale 
determination on purpose). 

• However, to determine the scale before matching, we still have to try a set of candidate scales. So, 
what is the total complexity?

Response to FAQ

Scale determination 
before matching

Determine scale when matching

See also the previous slide “Straightforward scale 
search” vs. “automatic scale determination”

30/50
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 Scale of Patch Descriptor 

 “Straightforward scale search” vs. “automatic scale determination”

Brute force matching with straightforward
scale search (one-step method)

Brute force matching with automatic scale 
determination (two-step method)

First step: Scale 
determination

Second step: brute force 
matching based on 

rescaled patches

Complexity: N•S + N•S + N2

Simultaneously find the optimal patch 
correspondence and optimal scale

Complexity: N2 • S

Recap on Patch Descriptor-based Method 

31/50
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 Motivation

 Disadvantages of patch descriptor-based method
• First: If the warping is not estimated accurately, very small errors in rotation, scale, and view point will 

affect matching score based on SSD.
• An alternative strategy: census descriptor-based method (to generate a descriptor, we still need to warp 

patch. However, instead of directly comparing patches by SSD, we compare their associated vector 
descriptors—less sensitive to noise.)

Scale-invariant Feature Transform (SIFT)

Left warped patch Right warped patch

Inconsistency
Leads to large

SSD

1D descriptors
32/50
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 Motivation

 Disadvantages of patch descriptor-based method
• Second: Laplacian of Gaussian (LoG) is relative inefficient.
• An alternative strategy: difference of Gaussian (DoG) kernel*

Scale-invariant Feature Transform (SIFT)

*The proof that LoG can be approximated by a difference of Gaussian comes from the Heat Equation:

Gaussian at 
different scales

Such a proof will not be asked in the exam. 33/50
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 Overview

 Step 1: Key point extraction based on extreme detection using DoG
 Step 2: Census descriptor assignment by Histogram of Oriented Gradients 

Scale-invariant Feature Transform (SIFT)

34/50

First step (Dog instead of LoG) Second step

Lowe, “Distinctive Image Features from Scale Invariant Keypoints”, Internal Journal of Computer Vision, 2004.
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 Key Point Extraction

 Image blurring based on Gaussian kernel
• This operation blurs the image, but maintains the image size.
• This operation is the first of two steps to generate DoG for validation 

of a set of candidate scales.

Scale-invariant Feature Transform (SIFT)

35/50

First step of DoG generation

Second step of DoG generation
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 Key Point Extraction

 Image down-sampling 
• This operation keeps the sharpness, but reduces the image size
• This step is not a compulsory step. Even if we only have a single octave, we can still detect key points. 

This step can be used to find more key points (at each octave, we can find some).

Scale-invariant Feature Transform (SIFT)

36/50
Space-scale pyramid Blurred imagesDown-sampled images
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Scale-invariant Feature Transform (SIFT)

37/50

 Key Point Extraction

 Building a space-scale pyramid
Adjacent blurred images are subtracted to produce the 
Difference of Gaussian (DoG) images.

We take one octave 
for example

These images are similar to the 
images convolved by a set of 

LoG with different scales
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Scale-invariant Feature Transform (SIFT)

38/50

 Key Point Extraction

 Scale space extrema detection
SIFT key points: local extrema in DoG images
• Each pixel is compared to 26 neighbors (below in green): its 8 neighbors in the current image (NMS) + 

9 neighbors in the adjacent upper scale + 9 neighbors in the adjacent lower scale (9+9: local 
extremum at different scales—keep window size unchanged on multiple images)

• If the pixel is an extremum with respect to its 26 neighbors then it is selected as SIFT feature.

We take one octave 
for example

DoG images

Scale determination by LoG (change 
window size in a single image)

Response 
at scale σ2

Pixel
✔

✘
✘



Computer Vision Group

 Key Point Extraction

 Representative result

Scale-invariant Feature Transform (SIFT)

Input image

Local extrema of DoG images across 
Scale (different σ of Gaussian) and 

Space (different resolutions)
39/50

Size of circle represents scale

Multiple octaves can be used to find more key 
points (at each octave, we can find some).

DoG Images at 
different octaves

(different resolutions)
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 Descriptor Computation

 Preprocessing step
• For a blob, consider a circular region around it. The radius of circle is determined by scale of this blob. 

(scale-invariant)
• Compute dominant orientation, and de-rotate the patch. (rotation-invariant)
• Reason for adaptive circle radius and de-rotation: regardless of type of descriptor (patch or census), only

two axis-aligned patches with the same scale can be compared.

Scale-invariant Feature Transform (SIFT)

40/50

Dominant direction 
obtaining

Dominant 
directions

Same scale
+

Axis-aligned

Left image Right image
Scale 1 of blob 1 Scale 2 of blob 2

Depict the same 3D area
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 Descriptor Computation

 Compute histogram of oriented gradients descriptor (census descriptor)

• Input: a de-rotated patch
• Divide patch into 4 × 4 cells
• For each cell, generate an 8-bin histograms (i.e., 8 directions)

Scale-invariant Feature Transform (SIFT)

41/50

One patch (4*4 cells) One cell with 
8 directions
(predefined)

8 directions

Dominant direction

A pixel
A cell
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 Descriptor Computation

 Compute histogram of oriented gradients descriptor (census descriptor)

• Concatenate all histograms into a single 1D vector, resulting SIFT descriptor: 4 × 4 × 8 = 128 values

Scale-invariant Feature Transform (SIFT)

42/50

16 cells 8 bins

16*16 
pixels
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 Output of Algorithm

 Location (pixel coordinates of the center of the patch): 2D vector
 Scale (i.e., size) of the patch: 1 scalar value (high scale corresponds to high blur in the 

space scale pyramid)
 Orientation (dominant direction): 1 scalar value (i.e., angle of the patch) 

 Descriptor: 4x4x8 = 128 element 1D vector

Scale-invariant Feature Transform (SIFT)

43/50

Dominant direction
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 Dominant Direction Determination vs. Census Descriptor Generation 

 Dominant direction determination: pixel-level
 Descriptor generation: we should first de-rotate the patch based on dominant direction. 

Then we generate descriptors on cell-level

Scale-invariant Feature Transform (SIFT)

Pixel-level
Cell-level

44/50

One patch (4*4 cells)



Other Descriptors and Detectors
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 Overview

 FAST: Features from Accelerated Segment Test
 SURF: Speeded Up Robust Features
 BRIEF: Binary Robust Independent Elementary Features
 ORB: Oriented FAST and Rotated BRIEF
 BRISK: Binary Robust Invariant Scalable Keypoints
 SuperPoint: Deep learning-based method

45/50



Computer Vision Group

 “SURF” Blob Detector & Descriptor

 SURF: Speeded Up Robust Features

 Similar to SIFT but much faster

 Results comparable with SIFT:
• Faster computation
• Generally shorter descriptors

Other Descriptors and Detectors

46/50
Bay, Tuytelaars, Van Gool, "Speeded Up Robust Features", European Conference on Computer Vision (ECCV), 2006.
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 “SURF” Blob Detector & Descriptor

 Basic idea: approximate Gaussian and DoG filters using box filters

Other Descriptors and Detectors

47/50

Integral image

Surf will not be asked in the exam.
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 “SuperPoint”: A Deep Learning-based Method

 Joint regression of keypoint location and descriptor. 

Other Descriptors and Detectors

48/50
Detone , Malisiewicz , Rabinovich . SuperPoint : Self Supervised Interest Point Detection and Description. CVPRW 2018.
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 “SuperPoint”: A Deep Learning-based Method

 Trained on synthetic images and refined on homographies of real images.
 Detector is less accurate than SIFT, but descriptor outperforms SIFT.
 For efficiency, it is slower than SIFT.

Other Descriptors and Detectors

49/50
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 Recap on Feature Matching Problem
 Recap on Patch Descriptor-based Method
 Response to Frequently-asked Questions
 A More Effective Method: SIFT
 Other Methods

Summary

50/50
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Thank you for your listening!
If you have any questions, please come to me :-)
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